In photoacoustic tomography (PAT), imaging speed is an essential metric that is restricted by the pulse laser repetition rate and the number of channels on the data acquisition card (DAQ). Reconstructing the initial sound pressure distribution with fewer elements can significantly reduce hardware costs and back-end acquisition pressure. However, undersampling will result in artefacts in the photoacoustic image, degrading its quality. Dictionary learning (DL) has been utilised for various image reconstruction techniques, but they disregard the uniformity of pixels in overlapping blocks. Therefore, we propose a compressive sensing (CS) reconstruction algorithm for circular array PAT based on gradient domain convolutional sparse coding (CSCGR). A small number of non-zero signal positions in the sparsely encoded feature map are used as partially known support (PKS) in the reconstruction procedure. The CS-CSCGR-PKS-based reconstruction algorithm can use fewer ultrasound transducers for signal acquisition while maintaining image fidelity. We demonstrated the effectiveness of this algorithm in sparse imaging through imaging experiments on the mouse torso, brain, and human fingers. Reducing the number of array elements while ensuring imaging quality effectively reduces equipment hardware costs and improves imaging speed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890869 | PMC |
http://dx.doi.org/10.1364/BOE.507831 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!