The development of highly active acid-base catalysts for transfer hydrogenations of biomass derived carbonyl compounds is a pressing challenge. Solid frustrated Lewis pairs (FLP) catalysis is possibly a solution, but the development of this concept is still at a very early stage. Herein, stable, phase-pure, crystalline hydrotalcite-like compounds were synthesized by incorporating cerium cations into layered double hydroxide (MgAlCe-LDH). Besides the insertion of well-isolated cerium centers surrounded by hydroxyl groups, the formation of hydroxyl vacancies near the aluminum centers, which were formed by the insertion of cerium centers into the layered double hydroxides (LDH) lattice, was also identified. Depending on the initial cerium concentration, LDHs with different Ce(III)/Ce(IV) ratios were produced, which had Lewis acidic and basic characters, respectively. However, the acid-base character of these LDHs was related to the actual Ce(III)/Ce(IV) molar ratios, resulting in significant differences in their catalytic performance. The as-prepared structures enabled varying degrees of transfer hydrogenation (Meerwein-Ponndorf-Verley MPV reduction) of biomass-derived carbonyl compounds to the corresponding alcohols without the collapse of the original lamellar structure of the LDH. The catalytic markers through the test reactions were changed as a function of the amount of Ce(III) centers, indicating the active role of Ce(III)-OH units. However, the cooperative interplay between the active sites of Ce(III)-containing specimens and the hydroxyl vacancies was necessary to maximize catalytic efficiency, pointing out that Ce-containing LDH is a potentially commercial solid FLP catalysts. Furthermore, the crucial role of the surface hydroxyl groups in the MPV reactions and the negative impact of the interlamellar water molecules on the catalytic activity of MgAlCe-LDH were demonstrated. These solid FLP-like catalysts exhibited excellent catalytic performance (cyclohexanol yield of 45%; furfuryl alcohol yield of 51%), which is competitive to the benchmark Sn- and Zr-containing zeolite catalysts, under mild reaction conditions, especially at low temperature ( = 65 °C).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10921384PMC
http://dx.doi.org/10.1021/acsami.3c16732DOI Listing

Publication Analysis

Top Keywords

layered double
12
centers layered
8
double hydroxide
8
carbonyl compounds
8
cerium centers
8
hydroxyl groups
8
hydroxyl vacancies
8
catalytic performance
8
centers
5
catalytic
5

Similar Publications

Identification and structural characterization of glucosylceramides in Holothuria (Halodeima) grisea: Insights from TLC and NMR techniques.

Carbohydr Res

January 2025

Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil. Electronic address:

Sea cucumbers are widely used in oriental cuisine due to their medicinal properties. Antioxidant, antifungal, antiviral, anticancer and neuroprotective activities have already been identified in several species and in different tissues. Among the class of compounds with biological activity are cerebrosides, which have important functions for the proper functioning of cells, especially neuronal cells.

View Article and Find Full Text PDF

Anchoring platinum clusters in CoP@CoNi layered double hydroxide to prepare high-performance and stable electrodes for efficient water splitting at high current density.

J Colloid Interface Sci

January 2025

Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 Henan, China; National Key Laboratory of Coking Coal Green Process Research, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address:

Hydrogen production via electrocatalytic water splitting has garnered significant attention, due to the growing demand for clean and renewable energy. However, achieving low overpotential and long-term stability of water splitting catalysts at high current densities remains a major challenge. Herein, a CoP@CoNi layered double hydroxide (LDH) electrode was synthesized via a two-step electrodeposition process, demonstrating oxygen evolution reaction, with an overpotential (ƞ) of 373 mV and a Tafel slope of 64.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

The ability to significantly enhance near-field coupling between light and matter at the nanoscale is crucial for advancing the fields of nanophotonics and nanopolariotonics. However, conventional probes face challenges in achieving optimal light-matter interaction. In this study, we propose a novel, to the best of our knowledge, simulation-based strategy that leverages tip engineering to dramatically amplify the scattering field through tailored double-layer geometries.

View Article and Find Full Text PDF

Complementary neural network circuits combining multifunctional high-performance p-type with n-type organic artificial synapses satisfy sophisticated applications such as image cognition and prosthesis control. However, implementing the dual-modal memory features that are both volatile and nonvolatile in a synaptic transistor is challenging. Herein, for the first time, we propose a single vertical n-type organic synaptic transistor (VNOST) with a novel polymeric organic mixed ionic-electronic conductor as the core channel material to achieve dual-modal synaptic learning/memory behaviors at different operating current densities via the formation of an electric double layer and the reversible ion doping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!