Background: Unidirectional displacement flow (UDF) ventilation systems in operating rooms are characterized by a uniformity of velocity ≥80% and protect patients and operating room personnel against exposure to hazardous substances. However, the air below the surgical lights and in the surrounding zone is turbulent, which impairs the ventilation system's effect.

Aim: We first used the recovery time (RT) as specified in International Organization for Standardization 14644 to determine the particle reduction capacity in the turbulent spaces of an operating room with a UDF system.

Methods: The uniformity of velocity was analyzed by comfort-level probe grid measurements in the protected area below a hemispherical closed-shaped and a semi-open column-shaped surgical light (tilt angles: 0°/15°/30°) and in the surrounding zone of a research operating room. Thereafter, RTs were calculated.

Results: At a supply air volume of 10,500 m/h, the velocity, reported as average uniformity ± standard deviation, was uniform in the protected area without lights (95.8% ± 1.7%), but locally turbulent below the hemispherical closed-shaped (69.3% ± 14.6%), the semi-open column-shaped light (66.9% ± 10.9%), and in the surrounding zone (51.5% ± 17.6%). The RTs ranged between 1.1 and 1.7 min below the lights and 3.5 ± 0.28 min in the surrounding zone and depended exponentially on the volume flow rate.

Conclusions: Compared to an RT of ≤20 min as required for operating rooms with mixed dilution flow, particles here were eliminated 12-18 times more quickly from below the surgical lights and 5.7 times from the surrounding zone. Thus, the effect of the lights was negligible and the UDF's retained its strong protective effect.

Download full-text PDF

Source
http://dx.doi.org/10.1177/19375867241228609DOI Listing

Publication Analysis

Top Keywords

surrounding zone
20
operating room
16
unidirectional displacement
8
displacement flow
8
turbulent spaces
8
spaces operating
8
operating rooms
8
uniformity velocity
8
surgical lights
8
protected area
8

Similar Publications

Background: Sequential application of radiofrequency with pulsed field (PF) ablation may increase lesion depth while preserving the advantages of PF. The study's aim was to determine lesion dimensions of sequential, colocalized radiofrequency and PF ablation.

Methods: A preclinical study using swine (n=4) performed lesions in the right/left ventricles.

View Article and Find Full Text PDF

Charosphere, a highly active zone between biochar and surrounding soil, is widely present in agricultural and wildfire-affected soils, yet whether reactive oxygen species (ROS) are produced within the charosphere remains unclear. Herein, the production and spatiotemporal evolution of charosphere ROS were explored. In situ ROS capture visualized a gradual decrease in ROS production with increasing distance from the biochar/soil interface.

View Article and Find Full Text PDF

ROS-differentiated release of Apelin-13 from hydrogel comprehensively treats myocardial ischemia-reperfusion injury.

J Control Release

January 2025

Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China. Electronic address:

Treatment of myocardial ischemia-reperfusion (MI/R) injury still faces the lack of clinically approved drugs. Apelin-13 is a highly promising drug candidate of MI/R injury, but hampered by its extremely short half-life in plasma. This calls for efficient and smart delivering system for Apelin-13 delivery, but has not been reported.

View Article and Find Full Text PDF

In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery.

View Article and Find Full Text PDF

The formation and development of plastic zone in the surrounding rock is the essence of large deformation damage to the surrounding rock in deep, highly stressed roadway. The -850 m roadway of the Qujiang mine is laid flat longitudinally under the 805 working face and coal pillar, and under the influence of the mining movement of the upper working face and the pre-stressing pressure of the coal pillar, the periphery of the roadway is no longer a pure non-uniform stress field, but a non-uniform stress field with both vertical and horizontal dynamic pressure. Based on the Hoek-Brown strength criterion, the unified strength theory is modified and the nonlinear unified strength theory of rock is established by comprehensively considering the intermediate principal stress, rock properties and rock structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!