The utilization of dietary components to support gut function and the health of young animals is an important factor for improved performance. The influence of high dietary fat levels in a low or high energy density diet on the performance of weaned piglets in relation to intestinal absorptive function, amino acid utilization, oxidative stress, and microbial metabolites was assessed in this study. The study examined the effect of two different diets containing either a low energy density/high-fat level or a high energy density/high-fat level. A total of 16 healthy weaners (9.60 ± 0.13 kg) were allocated to one of the two dietary treatments. There were eight weaners per treatment. Results showed that feed intake and body weight gain of weaners were increased by the diet of high energy density/high-fat level (p < 0.05), but the feed efficiency showed an increased tendency of significance (p = 0.05). In the duodenum, the villus height (VH) and VH/crypt depth (CD) ratio (VH:CD) were increased by dietary high energy density/high fat. In the jejunum and ileum, the CD was increased by low energy density/high-fat diet, while the goblet cell count and VH:CD were increased by dietary high energy density/high-fat level. Methionine, lysine and phenylalanine concentrations were increased by high energy density/high-fat diet while low energy density/high-fat diet showed an increased tendency to increase citrulline and ornithine concentrations in the piglet. Oxidative stress marker, lactase enzyme activity and serum calcium concentration were increased by a high energy density/high-fat diet. Increased dietary fat in all diets induced diarrhoea in the weaners (p < 0.01). It was concluded that a dietary high energy density/high-fat diet seems to positively modulate gut absorptive function, serum amino acid (methionine and lysine), calcium levels and increased oxidative stress markers in the weaned piglets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jpn.13945 | DOI Listing |
Can Assoc Radiol J
January 2025
Department of Medicine, McGill University, Montreal, QC, Canada.
Radiologists and other diagnostic imaging specialists play a pivotal role in the management of osteoporosis, a highly prevalent condition of reduced bone strength and increased fracture risk. Bone mineral density (BMD) measurement with dual-energy X-ray absorptiometry (DXA) is a critical component of identifying individuals at high risk for fracture. Strategies to prevent fractures are consolidated in the Osteoporosis Canada clinical practice guideline which was updated in 2023.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.
View Article and Find Full Text PDFAdv Mater
January 2025
Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, 100084, China.
Quantitative assessment for post-stroke spasticity remains a significant challenge due to the encountered variable resistance during passive stretching, which can lead to the widely used modified Ashworth scale (MAS) for spasticity assessment depending heavily on rehabilitation physicians. To address these challenges, a high-force-output triboelectric soft pneumatic actuator (TENG-SPA) inspired by a lobster tail is developed. The bioinspired TENG-SPA can generate approximately 20 N at 0.
View Article and Find Full Text PDFSmall
January 2025
Nanotechnology and Bio-Engineering Research Group, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland.
The rising demand for efficient energy storage in flexible electronics is driving the search for materials that are well-suited for the fabrication of these devices. Layered Double Hydroxides (LDHs) stand out as a remarkable material with a layered structure that embodies exceptional electrochemical properties. In this study, both double-shelled and single-shelled NiFe-Layered Double Hydroxide (LDH) particles are prepared using spindle-shaped MIL-101(Fe) as the template.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.
Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!