Besides being a key player in numerous fundamental biological processes, RNA also represents a versatile platform for the creation of therapeutic agents and efficient vaccines. The production of RNA oligonucleotides, especially those decorated with chemical modifications, cannot meet the exponential demand. Due to the inherent limits of solid-phase synthesis and in vitro transcription, alternative, biocatalytic approaches are in dire need to facilitate the production of RNA oligonucleotides. Here, we present a first step towards the controlled enzymatic synthesis of RNA oligonucleotides. We have explored the possibility of a simple protection step of the vicinal cis-diol moiety to temporarily block ribonucleotides. We demonstrate that pyrimidine nucleotides protected with acetals, particularly 2',3'-O-isopropylidene, are well-tolerated by the template-independent RNA polymerase PUP (polyU polymerase) and highly efficient coupling reactions can be achieved within minutes - an important feature for the development of enzymatic de novo synthesis protocols. Even though purines are not equally well-tolerated, these findings clearly demonstrate the possibility of using cis-diol-protected ribonucleotides combined with template-independent polymerases for the stepwise construction of RNA oligonucleotides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202400137 | DOI Listing |
RNA Biol
January 2025
Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India.
RNA-focused therapy and diagnostics have been making waves in molecular biology due to the advantages RNA has over DNA; for instance, the ability of RNA to target nearly any genetic component in the cell is a big step in treating disorders. Moreover, RNA-based diagnosis of diseases is only becoming increasingly popular, especially after the COVID-19 pandemic, which brought up the need for cost-effective and efficient diagnosing kits for the vast majority. RNA-based techniques also have close to no risk of genotoxicity and can efficiently target undruggable regions of the cell.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
Osteosarcoma (OS) is the most common bone malignancy. c-MET is recognized as a therapeutic target. However, traditional c-MET inhibitors show compromised efficacy due to the acquired resistance and side effects.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania. Electronic address:
Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g.
View Article and Find Full Text PDFBiomater Adv
December 2024
Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea. Electronic address:
MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach.
View Article and Find Full Text PDFActa Biomater
December 2024
Lingang Laboratory, Shanghai 200031, China. Electronic address:
Triple-negative breast cancer (TNBC) has been a clinical challenge due to its high recurrence and metastasis rates. Chemotherapy remains the primary treatment for TNBC after surgery ablation, but it lacks targeted specificity and causes side effects in normal tissues. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is significantly expressed in TNBC cells, and small interference RNA (siRNA) targeting ROR1 can effectively suppress ROR1 gene expression, thereby inhibiting proliferation and metastasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!