Background: Pathogen-related proteins (PR) are pivotal in plant defense, combating diverse biotic and abiotic stresses. While multiple gene families contribute to banana resistance against Fusarium oxysporum f sp. cubense (Foc), Pseudocercospora eumusae, and Pratylenchus coffeae, the significance of PR-1 genes in defense is paramount.
Methods: Three PR-1 genes, up-regulated under diverse biotic stresses, were cloned from both resistant and susceptible cultivars of Foc, P. eumusae, and P. coffeae. Molecular characterization, phylogenetic analysis, and docking studies with the Foc TR4 CP gene were conducted.
Results: Through transcriptomic and real-time studies, three PR-1 genes (Ma02_g15050, Ma02_g15060, and Ma04_g34800) from Musa spp. were identified. These genes exhibited significant up-regulation in resistant cultivars when exposed to Foc, P. eumusae, and P. coffeae. Cloning of these genes was successfully performed from both resistant and susceptible cultivars of Foc race 1 and TR4, P. eumusae, and P. coffeae. Distinct characteristics were observed among the PR-1 genes, with groups 1 and 2 being acidic with signal peptides, and group 3 being basic without signal peptides. All cloned PR-1 proteins belonged to the CAP superfamily (PF00188). Phylogenetic analysis revealed clustering patterns for acidic PR-1 proteins, and KEGG orthology showed associations with vital pathways, including MAPK signaling, plant hormone signal transduction, and plant-pathogen interaction. Secondary and tertiary structure analyses confirmed sequence conservation across studied species. Docking studies explored interactions between the cerato-platanin (CP) gene from Foc TR4 and Ma02_g15060 from banana, suggesting the potential hindrance of PR-1 antifungal activity through direct interaction.
Conclusions: The findings underscore the crucial role of cloned PR-1 genes in banana plant defense mechanisms against a broad spectrum of biotic stresses. These genes, especially those in groups 1 and 2, hold promise as candidates for developing stress-tolerant banana cultivars. The study provides valuable insights into the molecular aspects of banana defense strategies, emphasizing the potential applications of PR-1 genes in enhancing banana resilience.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-024-09258-2 | DOI Listing |
Int J Mol Sci
November 2024
Bari Unit, Institute for Sustainable Plant Protection, Department of Biology, Agricultural and Food Sciences, National Research Council of Italy, 70126 Bari, Italy.
The immune response in plants is regulated by several phytohormones and involves the overexpression of defense genes, including the pathogenesis-related () genes. The data reported in this paper indicate that nematodes can suppress the immune response by inhibiting the expression of defense genes. Transcripts from nine defense genes were detected by qRT-PCR in the roots of tomato plants at three and seven days post-inoculation (dpi) with living juveniles (J2s) of (root-knot nematodes, RKNs).
View Article and Find Full Text PDFSci Rep
November 2024
Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
Molecules
November 2024
College of Pharmacy, Dali University, Dali 671000, China.
rhizome is a traditional Chinese medicine of the same origin as food and medicine, and it has high economic value and social benefits. To screen the excellent germplasm resources of () and clarify the nutritional and medicinal value of the rhizome of , we used widely targeted metabolomics to analyze the traits and metabolomics of rhizomes of different germplasms of from different growth years. The results showed that different germplasms and growth years of were rich in different nutritional and medicinal components.
View Article and Find Full Text PDFLancet Microbe
December 2024
Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Department of Microbiology and Immunology, University of Melbourne-Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Background: Data on changes in pneumococcal serotypes in hospitalised children following the introduction of the pneumococcal conjugate vaccine (PCV) in low-income and middle-income countries are scarce. In 2016, Mongolia introduced the 13-valent PCV (PCV13) into the national immunisation programme. We aimed to describe the trend and impact of PCV13 introduction on pneumococcal carriage in hospitalised children aged 2-59 months with pneumonia in Mongolia over a 6-year period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!