A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Deep learning approach for automatic segmentation of auricular acupoint divisions]. | LitMetric

[Deep learning approach for automatic segmentation of auricular acupoint divisions].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.

Published: February 2024

The automatic segmentation of auricular acupoint divisions is the basis for realizing intelligent auricular acupoint therapy. However, due to the large number of ear acupuncture areas and the lack of clear boundary, existing solutions face challenges in automatically segmenting auricular acupoints. Therefore, a fast and accurate automatic segmentation approach of auricular acupuncture divisions is needed. A deep learning-based approach for automatic segmentation of auricular acupoint divisions is proposed, which mainly includes three stages: ear contour detection, anatomical part segmentation and keypoints localization, and image post-processing. In the anatomical part segmentation and keypoints localization stages, K-YOLACT was proposed to improve operating efficiency. Experimental results showed that the proposed approach achieved automatic segmentation of 66 acupuncture points in the frontal image of the ear, and the segmentation effect was better than existing solutions. At the same time, the mean average precision (mAP) of the anatomical part segmentation of the K-YOLACT was 83.2%, mAP of keypoints localization was 98.1%, and the running speed was significantly improved. The implementation of this approach provides a reliable solution for the accurate segmentation of auricular point images, and provides strong technical support for the modern development of traditional Chinese medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894748PMC
http://dx.doi.org/10.7507/1001-5515.202309010DOI Listing

Publication Analysis

Top Keywords

automatic segmentation
20
segmentation auricular
16
auricular acupoint
16
anatomical segmentation
12
keypoints localization
12
segmentation
10
approach automatic
8
acupoint divisions
8
existing solutions
8
segmentation keypoints
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!