A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering cannabinoid production in Saccharomyces cerevisiae. | LitMetric

Engineering cannabinoid production in Saccharomyces cerevisiae.

Biotechnol J

Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany.

Published: February 2024

Phytocannabinoids are natural products with highly interesting pharmacological properties mainly produced by plants. The production of cannabinoids in a heterologous host system has gained interest in recent years as a promising alternative to production from plant material. However, the systems reported so far do not achieve industrially relevant titers, highlighting the need for alternative systems. Here, we show the production of the cannabinoids cannabigerolic acid and cannabigerol from glucose and hexanoic acid in a heterologous yeast system using the aromatic prenyltransferase NphB from Streptomyces sp. strain CL190. The production was significantly increased by introducing a fusion protein consisting of ERG20 and NphB. Furthermore, we improved the production of the precursor olivetolic acid to a titer of 56 mg L . The implementation of the cannabinoid synthase genes enabled the production of Δ -tetrahydrocannabinolic acid, cannabidiolic acid as well as cannabichromenic acid, where the heterologous biosynthesis of cannabichromenic acid in a yeast system was demonstrated for the first time. In addition, we found that the product spectrum of the cannabinoid synthases localized to the vacuoles of the yeast cells was highly dependent on extracellular pH, allowing for easy manipulation. Finally, using a fed-batch approach, we showed cannabigerolic acid and olivetolic acid titers of up to 18.2 mg L and 117 mg L , respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.202300507DOI Listing

Publication Analysis

Top Keywords

acid
9
production cannabinoids
8
cannabigerolic acid
8
acid heterologous
8
yeast system
8
olivetolic acid
8
cannabichromenic acid
8
production
7
engineering cannabinoid
4
cannabinoid production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!