Carbon catabolite repression (CCR) is a global regulatory mechanism that allows organisms to preferentially utilize a preferred carbon source (usually glucose) by suppressing the expression of genes associated with the utilization of nonpreferred carbon sources. Aspergillus is a large genus of filamentous fungi, some species of which have been used as microbial cell factories for the production of organic acids, industrial enzymes, pharmaceuticals, and other fermented products due to their safety, substrate convenience, and well-established post-translational modifications. Many recent studies have verified that CCR-related genetic alterations can boost the yield of various carbohydrate-active enzymes (CAZymes), even under CCR conditions. Based on these findings, we emphasize that appropriate regulation of the CCR pathway, especially the expression of the key transcription factor CreA gene, has great potential for further expanding the application of Aspergillus cell factories to develop strains for industrial CAZymes production. Further, the genetically modified CCR strains (chassis hosts) can also be used for the production of other useful natural products and recombinant proteins, among others. We here review the regulatory mechanisms of CCR in Aspergillus and its direct application in enzyme production, as well as its potential application in organic acid and pharmaceutical production to illustrate the effects of CCR on Aspergillus cell factories.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.202300551DOI Listing

Publication Analysis

Top Keywords

cell factories
16
carbon catabolite
8
catabolite repression
8
aspergillus cell
8
ccr aspergillus
8
ccr
6
production
5
implications carbon
4
repression aspergillus-based
4
cell
4

Similar Publications

Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.

View Article and Find Full Text PDF

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

Engineering yeast to produce fraxetin from ferulic acid and lignin.

Appl Microbiol Biotechnol

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin.

View Article and Find Full Text PDF

High-level production of free fatty acids from lignocellulose hydrolysate by co-utilizing glucose and xylose in yeast.

Synth Syst Biotechnol

June 2025

Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.

Lignocellulose bio-refinery via microbial cell factories for chemical production represents a renewable and sustainable route in response to resource starvation and environmental concerns. However, the challenges associated with the co-utilization of xylose and glucose often hinders the efficiency of lignocellulose bioconversion. Here, we engineered yeast to effectively produce free fatty acids from lignocellulose.

View Article and Find Full Text PDF

Filamentous fungi are important cell factories for producing chemicals, organic acids, and enzymes. Although several genome editing tools are available for filamentous fungi, few effectively enable continuous evolution for rational engineering of complex phenotype. Here, we present CRISPR-Cas9 cytidine-base-editor (CBE) assisted evolution by continuously delivering a combinatorial sgRNA library to filamentous fungi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!