With the increasing application of ZnO nanomaterials (ZnO-NMts) in the biomedical field, it is crucial to assess their potential risks to humans and the environment. Therefore, this study aimed to screen for ZnO-NMts with low toxicity and establish safe exposure limits, and investigate their mechanisms of action. The study synthesized 0D ZnO nanoparticles (ZnO NPs) and 3D ZnO nanoflowers (ZnO Nfs) with different morphologies using a hydrothermal approach for comparative research. The ZnO-NMts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Mouse brain neuronal cells (NSC-34) were incubated with ZnO NMts for 6, 12, and 24 h, and the cell morphology was observed using TEM. The toxic effects of ZnO Nfs on NSC-34 cells were studied using CCK-8 cell viability detection, reactive oxygen species (ROS) measurement, caspase-3 activity detection, Annexin V-FITC/PI apoptosis assay, and mitochondrial membrane potential (Δφm) measurement. The results of the research showed that ZnO-NMts caused cytoplasmic vacuolization and nuclear pyknosis. After incubating cells with 12.5 µg mL ZnO-NMts for 12 h, ZnO NRfs exhibited the least toxicity and ROS levels. Additionally, there was a significant increase in caspase-3 activity, depolarization of mitochondrial membrane potential (Δφm), and the highest rate of early apoptosis.This study successfully identified ZnO NRfs with the lowest toxicity and determined the safe exposure limit to be < 12.5 µg mL (12 h). These findings will contribute to the clinical use of ZnO NRfs with low toxicity and provide a foundation for further research on their potential applications in brain disease treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.202300443DOI Listing

Publication Analysis

Top Keywords

zno
9
nsc-34 cells
8
safe exposure
8
zno nfs
8
electron microscopy
8
caspase-3 activity
8
mitochondrial membrane
8
membrane potential
8
potential Δφm
8
zno nrfs
8

Similar Publications

Proximity ferroelectricity in wurtzite heterostructures.

Nature

January 2025

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.

Proximity ferroelectricity is an interface-associated phenomenon in electric-field-driven polarization reversal in a non-ferroelectric polar material induced by one or more adjacent ferroelectric materials. Here we report proximity ferroelectricity in wurtzite ferroelectric heterostructures. In the present case, the non-ferroelectric layers are AlN and ZnO, whereas the ferroelectric layers are AlBN, AlScN and ZnMgO.

View Article and Find Full Text PDF

Wound dressing development is an area of active research. Traditional dressings lack antibacterial activity, biocompatibility, and tissue regeneration. Alginate is a heavily investigated polymer employed as wound dressings and can be combined with a wide range of additives.

View Article and Find Full Text PDF

Near-ultraviolet (NUV)-pumped white light-emitting-diodes (WLEDs) often suffer from poor color rendering in the 480-520 nm range, highlighting the need for an efficient cyan phosphor with strong absorption at 370-420 nm. This study presents the successful synthesis of cyan-emitting ZnS/ZnO phosphors using a high-energy planetary ball milling method followed by post-annealing. The fabricated phosphors, with particle sizes ranging from 1 to 3 μm, exhibit strong cyan emission with CIE chromaticity coordinates of (0.

View Article and Find Full Text PDF

Introduction: The ingestion of nanomaterials (NMs) may impair the intestinal barrier, but the underlying mechanisms remain evasive, and evidence has not been systematically gathered or produced. A mechanistic-based approach would be instrumental in assessing whether relevant NMs disrupt the intestinal barrier, thereby supporting the NM risk assessment in the food sector.

Methods: In this study, we developed an adverse outcome pathway (AOP) based on biological plausibility and by leveraging information from an existing NM-relevant AOP that leads to hepatic outcomes.

View Article and Find Full Text PDF

Direct conversion of CO with renewable H to produce methanol provides a promising way for CO utilization and H storage. Cu/ZnO catalysts are active, but their activities depend on the preparation methods. Here, we reported a facile mechanical grinding method for the fast synthesis of Cu@zeolitic imidazolate framework-8 (ZIF-8) derived Cu/ZnO catalysts applied in CO hydrogenation to methanol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!