The optimization of bioprocess for CHO cell culture involves careful consideration of factors such as nutrient consumption, metabolic byproduct accumulation, cell growth, and monoclonal antibody (mAb) production. Valuable insights can be obtained by understanding cellular physiology to ensure robust and efficient bioprocess. This study aims to improve our understanding of the CHO-K1 cell metabolism using H NMR-based metabolomics. Initially, the variations in culture performance and metabolic profiles under varied aeration conditions and copper supplementations were thoroughly examined. Furthermore, a comprehensive metabolic pathway analysis was performed to assess the impact of these conditions on the implicated pathways. The results revealed substantial alterations in the pyruvate metabolism, histidine metabolism, as well as phenylalanine, tyrosine and tryptophan biosynthesis, which were especially evident in cultures subjected to copper deficiency conditions. Conclusively, significant metabolites governing cell growth and mAb titer were identified through orthogonal partial least square-discriminant analysis (OPLS-DA). Metabolites, including glycerol, alanine, formate, glutamate, phenylalanine, and valine, exhibited strong associations with distinct cell growth phases. Additionally, glycerol, acetate, lactate, formate, glycine, histidine, and aspartate emerged as metabolites influencing cell productivity. This study demonstrates the potential of employing H NMR-based metabolomics technology in bioprocess research. It provides valuable guidance for feed medium development, feeding strategy design, bioprocess parameter adjustments, and ultimately the enhancement of cell proliferation and mAb yield.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.202300495DOI Listing

Publication Analysis

Top Keywords

nmr-based metabolomics
12
cell growth
12
varied aeration
8
aeration conditions
8
conditions copper
8
copper supplementations
8
cell
7
exploring metabolic
4
metabolic responses
4
responses pathway
4

Similar Publications

Fisetin Alleviates d-Galactose-Induced Senescence in C2C12 Myoblasts: Metabolic and Gene Regulatory Mechanisms.

J Proteome Res

January 2025

Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Skeletal muscle aging poses a major threat to the health and quality of life of elderly individuals. Fisetin, a natural polyphenolic compound, exhibits various biological activities; however, its role in preventing skeletal muscle cell aging is still unclear. This study aimed to elucidate the effects of fisetin on skeletal muscle aging using a d-galactose-induced C2C12 myoblast senescence model.

View Article and Find Full Text PDF

Mapping Thrombosis Serum Markers by H-NMR Allied with Machine Learning Tools.

Molecules

December 2024

Laboratory of Hemostasis, Hemocentro-Unicamp, Universidade Estadual de Campinas, Campinas 13083-878, SP, Brazil.

Machine learning and artificial intelligence tools were used to investigate the discriminatory potential of blood serum metabolites for thromboembolism and antiphospholipid syndrome (APS). H-NMR-based metabonomics data of the serum samples of patients with arterial or venous thromboembolism (VTE) without APS (n = 32), thrombotic primary APS patients (APS, n = 32), and healthy controls (HCs) (n = 32) were investigated. Unique metabolic profiles between VTE and HCs, APS and HCs, and between VTE and triple-positive APS groups were indicative of the significant alterations in the metabolic pathways of glycolysis, the TCA cycle, lipid metabolism, and branched-chain amino acid (BCAA) metabolism, and pointed to the complex pathogenesis mechanisms of APS and VTE.

View Article and Find Full Text PDF

Utilizing Lactic Acid Bacteria to Improve Hyperlipidemia: A Comprehensive Analysis from Gut Microbiota to Metabolic Pathways.

Foods

December 2024

State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Hyperlipidemia poses significant risks for cardiovascular diseases, with emerging evidence underscoring the critical role of gut microbiota in metabolic regulation. This study explores CAAS36, a probiotic strain with promising cholesterol-lowering capabilities, assessing its impact on hyperlipidemic hamsters. Utilizing 1H NMR-based metabolomics and 16S rRNA gene sequencing, we observed that CAAS36 treatment not only altered metabolic pathways but also reshaped gut microbiota composition.

View Article and Find Full Text PDF

Amino acid analogues with a phosphorus-containing moiety replacing the carboxylic group are promising sources of biologically active compounds. The -phosphinic group, with hydrogen-phosphorus-carbon (H-P-C) bonds and a flattened tetrahedral configuration, is a bioisostere of the carboxylic group. Consequently, amino--phosphinic acids undergo substrate-like enzymatic transformations, leading to new biologically active metabolites.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!