Real-world (rw-) statistical regularities, or expectations about the visual world learned over a lifetime, have been found to be associated with scene perception efficiency. For example, good (i.e., highly representative) exemplars of basic scene categories, one example of an rw-statistical regularity, are detected more readily than bad exemplars of the category. Similarly, good exemplars achieve higher multivariate pattern analysis (MVPA) classification accuracy than bad exemplars in scene-responsive regions of interest, particularly in the parahippocampal place area (PPA). However, it is unclear whether the good exemplar advantages observed depend on or are even confounded by selective attention. Here, we ask whether the observed neural advantage of the good scene exemplars requires full attention. We used a dual-task paradigm to manipulate attention and exemplar representativeness while recording neural responses with functional magnetic resonance imaging (fMRI). Both univariate analysis and MVPA were adopted to examine the effect of representativeness. In the attend-to-scenes condition, our results replicated an earlier study showing that good exemplars evoke less activity but a clearer category representation than bad exemplars. Importantly, similar advantages of the good exemplars were also observed when participants were distracted by a serial visual search task demanding a high attention load. In addition, cross-decoding between attended and distracted representations revealed that attention resulted in a quantitative (increased activation) rather than qualitative (altered activity patterns) improvement of the category representation, particularly for good exemplars. We, therefore, conclude that the effect of category representativeness on neural representations does not require full attention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.16291 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!