Attention, an important index of cognitive function, can be affected amidst colored lights. This work investigated the effects of colored lights on the performance in attention task. Participants (N = 42) performed in one, two, and three letter cancellation task (LCT) during four lighting conditions. The order of LCT and the colored light sessions were randomized. The performance in LCT was evaluated through % accuracy, % omission, and % error. A repeated measures ANOVA showed a statistically significant difference in % accuracy in one LCT (F(2.46, 100.8) = 24.45, p < 0.001), two LCT (F(2.57, 105.4) = 20.53, p < 0.001), and three LCT (F(2.66, 109.22) = 17.96, p < 0.001) among the four colored lights. In addition, % omission revealed a statistically significant difference in one LCT (F(2.46, 100.8) = 24.43, p < 0.001), two LCT (F(2.57, 105.4) = 20.57, p < 0.001), and three LCT (F(2.66, 109.16) = 18.21, p < 0.001) among the four lights. There was no statistically significant difference in % error in one LCT (F(2.05, 84.1) = 1.23, p = 0.3), two LCT (F(2.66, 109.06) = 0.62, p = 0.971), three LCT (F(2.62, 107.53) = 0.97, p = 0.4) among the four lighting conditions. Colored lights affect attention-related cognitive processing. The attentional correlates of white and red lights are more compared to green, and blue lights. Lighting condition should be an important consideration for cognitive testing, for designing workspaces, educational settings, and other environments where attention plays a crucial role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2024.02.010 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Henan University of Technology, School of Chemistry and Chemical Engineering, CHINA.
Developing of molecular crystalline materials with light-induced multiple dynamic deformation in space dimension and photochromism on time scales has attracted much attention for its potential applications in actuators, sensoring and information storage. Nevertheless, organic crystals capable of both photoinduced dynamic effects and static color change are rare, particularly for multi-component cocrystals system. In this study, we first report the construction of charge transfer co-crystals allows their light-induced solid-to-liquid transition and photochromic behaviors to be controlled by trans-stilbene (TSB) as an electron donor and 3,4,5,6-Tetrafluorophthalonitrile (TFP) as an electron acceptor.
View Article and Find Full Text PDFSci Rep
January 2025
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, People's Republic of China.
A dual-polarity, photovoltaic photodetector for red-green dual-wavelength detection is demonstrated, operating in the self-powered mode. It is based on a core-shell n-InGaN nanowire/p-CuO heterostructure with inner upward energy band bending and near surface downward energy band bending. This produces negative photocurrent for red light illumination and positive photocurrent for green light illumination.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China.
A wearable detector to monitor visible light intensity is realized by the restrained photochromism of a hydrogel composite containing light-responsive spiropyran with hydroxyl groups (SPOH). When exposed to visible light, the SPOH experiences a ring-opening to a ring-closed transition accompanied by discoloration from red to yellow. Unlike in the solution, the photochromism/discoloration rate is strongly correlated to the cross-linking points.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No.688, Jinhua, 321004, P. R. China.
Polycyclic multiple resonance (MR) molecules reveal narrowband emission, making them very promising emitters for high color purity display. Nevertheless, they still have challenges such as aggregation-induced emission quenching and spectral broadening. Overcoming these obstacles requires an in-depth understanding of the correlations among the alterations in their geometries, packing structures, and molecular vibrations and their corresponding changes in their photoluminescence (PL) properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Ritsumeikan University: Ritsumeikan Daigaku, Applied Chemistry, B805 Biolink, 1-1-1 Nojihigashi, 525-8577, Kusatsu, JAPAN.
Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!