Cyclin-dependent kinase 4 (CDK4) and CDK6 inhibitors (CDK4/6i) have rapidly received Food and Drug Administration (FDA) approval as a new type of therapy for patients with advanced hormone receptor-positive breast cancer. However, with the widespread application of CDK4/6i, drug resistance has become a new challenge for clinical practice and has greatly limited the treatment effect. Here, the whole microenvironment landscape of ER breast cancer tumors was revealed through single-cell RNA sequencing, and a specific subset of cancer-associated fibroblasts (CD63 CAFs) was identified as highly enriched in CDK4/6i resistant tumor tissues. Then, we found that CD63 CAFs can distinctly promote resistance to CDK4/6i in breast cancer cells and tumor xenografts. In addition, it was discovered that miR-20 is markedly enriched in the CD63 CAFs-derived exosomes, which are used to communicate with ER breast cancer cells, leading to CDK4/6i resistance. Furthermore, exosomal miR-20 could directly target the RB1 mRNA 3'UTR and negatively regulate RB1 expression to decrease CDK4/6i sensitivity in breast cancer cells. Most importantly, we designed and synthesized cRGD-miR-20 sponge nanoparticles and found that they can enhance the therapeutic effect of CDK4/6i in breast cancer. In summary, our findings reveal that CD63 CAFs can promote CDK4/6i resistance via exosomal miR-20, which induces the downregulation of RB1 in breast cancer cells, and suggest that CD63 CAFs may be a novel therapeutic target to enhance CDK4/6i sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2024.216747 | DOI Listing |
JAMA Surg
January 2025
Breast Unit, Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
Importance: Increasing evidence supports the oncologic safety of de-escalating axillary surgery for patients with breast cancer after neoadjuvant chemotherapy (NAC).
Objective: To evaluate the oncologic outcomes of de-escalating axillary surgery among patients with clinically node (cN)-positive breast cancer and patients whose disease became cN negative after NAC (ycN negative).
Design, Setting, And Participants: In the NEOSENTITURK MF-1803 prospective cohort registry trial, patients from 37 centers with cT1-4N1-3M0 disease treated with sentinel lymph node biopsy (SLNB) or targeted axillary dissection (TAD) alone or with ypN-negative or ypN-positive disease after NAC were recruited between February 15, 2019, and January 1, 2023, and evaluated.
JAMA Netw Open
January 2025
Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts.
Importance: CHEK2 pathogenic and likely pathogenic variants (PVs) are common, and low-risk (LR) variants, p.I157T, p.S428F, and p.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Medical Oncology, The Ottawa Hospital Cancer Centre, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada.
Importance: Evolving breast cancer treatments have led to improved outcomes but carry a substantial financial burden. The association of treatment costs with the cost-effectiveness of screening mammography is unknown.
Objective: To determine the cost-effectiveness of population-based breast cancer screening in the context of current treatment standards.
JAMA Netw Open
January 2025
Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston.
Importance: Cardiovascular disease (CVD) and cancer are the leading causes of mortality in the US. Large-scale population-based and mechanistic studies support a direct effect of CVD on accelerated tumor growth and spread, specifically in breast cancer.
Objective: To assess whether individuals presenting with advanced breast cancers are more likely to have prevalent CVD compared with those with early-stage breast cancers at the time of diagnosis.
Mol Diagn Ther
January 2025
Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road No. 24, Luoyang, 471000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!