A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Legal hypergraphs. | LitMetric

Legal hypergraphs.

Philos Trans A Math Phys Eng Sci

Center for Legal Technology and Data Science, Bucerius Law School, Hamburg, Germany.

Published: April 2024

Complexity science provides a powerful framework for understanding physical, biological and social systems, and network analysis is one of its principal tools. Since many complex systems exhibit multilateral interactions that change over time, in recent years, network scientists have become increasingly interested in modelling and measuring networks featuring . At the same time, while network analysis has been more widely adopted to investigate the structure and evolution of law as a complex system, the utility of dynamic higher-order networks in the legal domain has remained largely unexplored. Setting out to change this, we introduce as a powerful tool for studying legal network data. Temporal hypergraphs generalize static graphs by (i) allowing any number of nodes to participate in an edge and (ii) permitting nodes or edges to be added, modified or deleted. We describe models and methods to explore that evolve over time and elucidate their benefits through case studies on legal citation and collaboration networks that change over a period of more than 70 years. Our work demonstrates the potential of dynamic higher-order networks for studying complex legal systems, and it facilitates further advances in legal network analysis. This article is part of the theme issue 'A complexity science approach to law and governance'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894694PMC
http://dx.doi.org/10.1098/rsta.2023.0141DOI Listing

Publication Analysis

Top Keywords

network analysis
12
complexity science
8
dynamic higher-order
8
higher-order networks
8
legal network
8
legal
6
network
5
legal hypergraphs
4
hypergraphs complexity
4
science powerful
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!