Measuring spatial visual loss in rats by retinotopic mapping of the superior colliculus using a novel multi-electrode array technique.

J Neurosci Methods

Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, United States; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, United States. Electronic address:

Published: May 2024

Background: The retinotopic map property of the superior colliculus (SC) is a reliable indicator of visual functional changes in rodents. Electrophysiological mapping of the SC using a single electrode has been employed for measuring visual function in rat and mouse disease models. Single electrode mapping is highly laborious requiring long-term exposure to the SC surface and prolonged anesthetic conditions that can adversely affect the mapping data.

New Method: To avoid the above-mentioned issues, we fabricated a fifty-six (56) electrode multi-electrode array (MEA) for rapid and reliable visual functional mapping of the SC. Since SC is a dome-shaped structure, the array was made of electrodes with dissimilar tip lengths to enable simultaneous and uniform penetration of the SC.

Results: SC mapping using the new MEA was conducted in retinal degenerate (RD) Royal College of Surgeons (RCS) rats and rats with focal retinal damage induced by green diode laser. For SC mapping, the MEA was advanced into the SC surface and the visual activities were recorded during full-filed light stimulation of the eye. Based on the morphological examination, the MEA electrodes covered most of the exposed SC area and penetrated the SC surface at a relatively uniform depth. MEA mapping in RCS rats (n=9) demonstrated progressive development of a scotoma in the SC that corresponded to the degree of photoreceptor loss. MEA mapping in the laser damaged rats demonstrated the presence of a scotoma in the SC area that corresponded to the location of retinal laser injury.

Comparison With Existing Methods And Conclusions: The use of MEA for SC mapping is advantageous over single electrode recording by enabling faster recordings and reducing anesthesia time. This study establishes the feasibility of the MEA technique for rapid and efficient SC mapping, particularly advantageous for evaluating therapeutic effects in retinal degenerate rat disease models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363873PMC
http://dx.doi.org/10.1016/j.jneumeth.2024.110095DOI Listing

Publication Analysis

Top Keywords

single electrode
12
mea mapping
12
mapping
11
superior colliculus
8
multi-electrode array
8
visual functional
8
disease models
8
mea
8
mapping mea
8
retinal degenerate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!