The mapping of impervious surfaces using remote sensing techniques offer essential technical support for sustainable development objectives and safeguard the environment. In this study, we developed an automated method without training samples for mapping impervious surfaces using texture features. The different aggregated impervious surface patterns and distributions in study areas of Site A-C in China (Beijing, Huainan, Jinhua) were considered. The Site D-E in Dubai and Tehran, surrounded with deserts in arid areas. They were selected to develop and evaluate the performance of the proposed automated method. The texture features of the Contrast, Gabor wavelets, and secondary texture extraction (Con_Gabor) derived from Sentinel-2 images at each site were used to construct the three-dimensional texture features (3DTF) of impervious surfaces. The 3DTF-combined K-means classifier was used to automatically map the impervious surfaces. The results showed that the overall accuracies of mapping impervious surface were 91.15 %, 89.75 %, and 91.90 % in Site A-C. The overall accuracies of mapping impervious surface were 90.95 %, 91.45 % and 88.23 % in rural areas. The distributions of impervious surface on automated method, GHS-BUILT-S and ESA WorldCover were similar in study areas. The automated method for mapping impervious surfaces performed as well as the artificial neural network (ANN) and Random Forest (RF), and the advantage of not requiring training samples. The automated method was tested in the in Dubai and Tehran. The overall accuracies of the automatic method for mapping impervious surfaces >89 % at Site D-E, and >88 % at rural area. In addition, the 3DTF was proved as the simplest and most effective feature combination to map impervious surfaces. The impervious surface mapped using the automated method was robust across bands, seasons and sensors. However, further evaluation is necessary to assess the effectiveness of automated methods using high spatial resolution images for mapping impervious surface in complex areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171181 | DOI Listing |
Sci Total Environ
January 2025
Guangzhou Huadu district drainage management center, Guangzhou 510800, China.
Rapid urbanization has significantly altered surface landscape configurations, leading to complex urban climates. While much attention has been focused on impervious surfaces' impact on extreme precipitation, a critical gap remains in understanding how various 2D urban landscape components influence extreme precipitation across different durations. Through an analysis of the non-stationarity and spatiotemporal variations in extreme precipitation across the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) from 1990 to 2020, we constructed the non-stationary Generalized Additive Models for Location Scale and Shape (GAMLSS) model by introducing six urban landscape structural metrics as explanatory variables for each of the 27 meteorological stations in the GBA.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Qinghai Normal University, Xining, 810016, China. Electronic address:
With increasing urbanization pressures, there is an urgent need to improve the urban residents' well-being and achieve the sustainable development goals (SDGs). Ecosystem services (ESs) are vital for human well-being (HW) and survival, providing essential benefits like clean water while supporting the SDGs. However, understanding the impact mechanism of urban ESs on the HW under the framework of the SGDs in a changing world remains challenging.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Biological Systems Engineering, Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, USA.
The hydrologic benefits of catchment-scale implementation of stormwater control measures (SCMs) in mitigating the adverse effects of urbanization are well established. Nevertheless, recent studies indicate that the Unified Stormwater Sizing Criteria (USSC) regulations, mandating the combined use of distributed and storage stormwater controls, do not protect channel stability, despite their effectiveness in reducing runoff from impervious surfaces. The USSC are the basis of SCM design in 11 U.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Sun Yat-sen University, School of Geography and Planning, GuangZhou, 510275, China. Electronic address:
Environ Monit Assess
January 2025
Institute of Geography, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04001, Košice, Slovak Republic.
In recent decades, global climate change and rapid urbanization have aggravated the urban heat island (UHI) effect, affecting the well-being of urban citizens. Although this significant phenomenon is more pronounced in larger metropolitan areas due to extensive impervious surfaces, small- and medium-sized cities also experience UHI effects, yet research on UHI in these cities is rare, emphasizing the importance of land surface temperature (LST) as a key parameter for studying UHI dynamics. Therefore, this paper focuses on the evaluation of LST and land cover (LC) changes in the city of Prešov, Slovakia, a typical medium-sized European city that has recently undergone significant LC changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!