A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring hydrological controls on dissolved organic carbon export dynamics in a typical flash flood catchment using a process-based model. | LitMetric

The dynamics of dissolved organic carbon (DOC) export from headwater catchments are of critical importance for the global carbon balance and are driven by complex runoff processes. Most previous studies have used statistical relationships between runoff and DOC concentration to estimate DOC export dynamics. Thus, the coupling mechanisms between runoff generation and DOC export dynamics at the process level were obscured in the fitting parameters and have rarely been addressed. In this study, high-frequency (hourly) discharge and DOC export from a typical flash flood experimental headwater catchment with an area of 1.8 km were simulated using a process-based model (INCA-C). The results showed that the INCA-C model successfully captured the hourly dynamics of both discharge and DOC concentrations with a Nash-Sutcliffe efficiency (NSE) of 0.47-0.81 and 0.28-0.70 among moderate events and 0.81-0.85 and 0.19-0.90 among extreme events, respectively. The DOC was exported with distinct concentration dynamics, fluxes, and contributions from the four flow pathways under different storm intensities. At higher intensities, the DOC fluxes were exported by subsurface flows, particularly from shallow organic soil, with greater peaks and shorter time-to-peaks. Exported DOC is primarily sourced from subsurface runoff from the mineral layer (73 %-77 %) during moderate events, whereas it is primarily sourced from subsurface runoff from the organic layer (61 %-79 %) during extreme events. The two contrasting contributions suggest that hydrological pathway controls and DOC dynamic patterns can shift owing to runoff generation influenced by storm intensity. The distinct and variable controls of different flow pathways on DOC export highlight the need to explain the role of hydrology in regulating DOC storm exports through process-based modelling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.171139DOI Listing

Publication Analysis

Top Keywords

doc export
20
export dynamics
12
doc
12
dissolved organic
8
organic carbon
8
typical flash
8
flash flood
8
process-based model
8
runoff generation
8
discharge doc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!