Brominated flame retardants (BFRs) are bromine-bearing additives added to the polymeric fraction in various applications to impede fire ignition. The Stockholm Convention and various other legislations abolished legacy BFRs usage and hence, the so-called novel BFRs (NBFRs) were introduced into the market. Recent studies spotlighted their existence in household dust, aquifers and aquatic/aerial species. Co-pyrolysis of BFRs with metal oxides has emerged as a potent chemical recycling approach that produces a bromine-free stream of hydrocarbon. Herein, we investigate the debromination of two prominent two NBFRs; namely tetrabromobisphenol A 2,3-dibromopropyl ether (TD) and tetrabromobisphenol A diallyl ether (TAE) through their co-pyrolysis with zinc oxide (ZnO) and franklinite (ZnFeO). Most of the zinc content in electrical arc furnace dust (EAFD) exists in the form of these two metal oxides. Conversion of these metal oxides into their respective bromides could also assist in the selective extraction of the valuable zinc content in EAFD. The debromination potential of both oxides was unveiled via a multitude of characterization studies to analyze products (char, gas and condensates). The thermogravimetric analysis suggested a pyrolytic run up to 500 °C and the TAE treatment with ZnO produced only a trivial amount of brominated compounds (relative area, 0.83%). Phenol was the sole common compound in condensable products; potentially formed by the β-scission debromination reaction from the parental molecular skeleton. Inorganic compounds and methane were the major constituents in the gaseous products. The pyrochar analyses confirmed the presence of metal bromides retained in the residue, averting the bromine release into the atmosphere. The ion chromatography analysis portrayed <8% of HBr gas release into the atmosphere upon pyrolysis with ZnO. The ZnO dominance herein envisaged further probes into other spinel ferrites in combating brominated polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.123645 | DOI Listing |
Plant Physiol
January 2025
College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
Oxidative stress is a major threat to plant growth and survival. To understand how plants cope with oxidative stress, we carried out a genetic screen for Arabidopsis (Arabidopsis thaliana) mutants with altered response to hydrogen peroxide (H2O2) in root growth. Herein, we report the characterization of one of the hypersensitive mutants obtained.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620990 Yekaterinburg, Russia.
The crystal and electronic structure of ZrxTi1-xSe2 (0 < x < 1) compounds and their electrical resistivity have been studied in detail for the first time. A combination of soft x-ray spectroscopic methods (XPS, XAS, and ResPES) was used to investigate the electronic structure. The lattice parameters as a function of the metal concentration x obey Vegard's law.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
As fundamental structural scaffolds in numerous natural products and pharmaceutical molecules, the construction of cyclohexenone architectures has remained a pivotal focus in organic chemistry. However, established strategies to synthesize cyclohexenone derivatives Dowd-Beckwith ring-expansion reaction invariably involve the use of transition metals and photoirradiation. Herein, we present a novel transition-metal- and photoirradiation-free pathway to access such structures from α-iodomethyl β-keto esters with electron-rich arenediazonium salts as inexpensive radical initiators and oxidants under mild reaction conditions.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
CNR-Istituto Officina dei Materiali, TASC, Trieste, Italy.
The CO oxidation reaction on (Co,Mg,Mn,Ni,Zn)(Al,Co,Cr,Fe,Mn)O and (Cr,Mn,Fe,Co,Ni)O high entropy spinel oxides was studied for what concerns its mechanism by means of soft X-ray absorption spectroscopy. In the (Cr,Mn,Fe,Co,Ni)O high entropy spinel, CO oxidation starts at 150 °C, and complete conversion to CO is obtained at 300 °C. For the (Co,Mg,Mn,Ni,Zn)(Al,Co,Cr,Fe,Mn)O spinel oxides, in contrast, the reaction starts at 200 °C, and complete conversion needs temperatures of the order of 350 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!