Comprehensive exploration of the anaerobic biotransformation of polychlorinated biphenyls in Dehalococcoides mccartyi CG1: Kinetics, enantioselectivity, and isotope fractionation.

Environ Pollut

State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

Published: April 2024

Anaerobic microbial transformation is a key pathway in the natural attenuation of polychlorinated biphenyls (PCBs). Much less is known about the transformation behaviors induced by pure organohalide-respiring bacteria, especially kinetic isotope effects. Therefore, the kinetics, pathways, enantioselectivity, and carbon and chlorine isotope fractionation of PCBs transformation by Dehalococcoides mccartyi CG1 were comprehensively explored. The results indicated that the PCBs were mainly dechlorinated via removing their double-flanked meta-chlorine, with their first-order kinetic constants following the order of PCB132 > PCB174 > PCB85 > PCB183 > PCB138. However, PCBs occurred great loss of stoichiometric mass balance during microbial transformation, suggesting the generation of other non-dehalogenation products and/or stable intermediates. The preferential transformation of (-)-atropisomers and generation of (+)-atropisomers were observed during PCB132 and PCB174 biotransformation with the enantiomeric enrichment factors of -0.8609 ± 0.1077 and -0.4503 ± 0.1334 (first half incubation times)/-0.1888 ± 0.1354 (second half incubation times), respectively, whereas no enantioselectivity occurred during PCB183 biotransformation. More importantly, although there was no carbon and chlorine isotope fractionation occurring for studied substrates, the δC values of dechlorination products, including PCB47 (-28.15 ± 0.35‰ ∼ -27.77 ± 0.20‰), PCB91 (-36.36 ± 0.09‰ ∼ -34.71 ± 0.49‰), and PCB149 (-28.08 ± 0.26‰ ∼ -26.83 ± 0.10‰), were all significantly different from those of their corresponding substrates (PCB85: -30.81 ± 0.02‰ ∼ -30.22 ± 0.21‰, PCB132: -33.57 ± 0.15‰ ∼ -33.13 ± 0.14‰, and PCB174: -26.30 ± 0.09‰ ∼ -26.01 ± 0.07‰), which further supported the generation of other non-dehalogenation products and/or stable intermediates with enrichment or depletion of C. These findings provide deeper insights into the anaerobic microbial transformation behaviors of PCBs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.123650DOI Listing

Publication Analysis

Top Keywords

isotope fractionation
12
microbial transformation
12
polychlorinated biphenyls
8
dehalococcoides mccartyi
8
mccartyi cg1
8
anaerobic microbial
8
pcbs transformation
8
transformation behaviors
8
carbon chlorine
8
chlorine isotope
8

Similar Publications

Carbon, hydrogen, nitrogen and chlorine isotope fractionation during 3-chloroaniline transformation in aqueous environments by direct photolysis, TiO photocatalysis and hydrolysis.

Water Res

December 2024

School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany. Electronic address:

This study investigates carbon, hydrogen, nitrogen and chlorine isotope fractionation during the transformation of 3-chloroaniline (3-CA) via direct photolysis, TiO photocatalytic degradation at neutral condition and hydrolysis at pH 3, pH 7 and pH 11. Direct photolysis and ∙OH reaction (UV/HO) showed similar inverse isotope fractionation (ε) for carbon (1.9 ± 0.

View Article and Find Full Text PDF

Background: In radioembolization therapy for hepatic malignancies, the accurate estimation of lung shunt fraction (LSF) is crucial to minimize the risk of radiation-induced pneumonitis and fibrosis due to hepatopulmonary shunting of yttrium-90 (90Y)-microspheres. This study aimed to compare the accuracy and precision of LSF estimation using technetium-99m macroaggregated albumin single photon emission computed tomography ([99mTc]Tc-MAA SPECT) LSF, [99mTc]Tc-MAA planar LSF, and 90Y PET LSF in patients undergoing 90Y-radioembolization.

Material And Methods: A retrospective study was conducted involving 15 patients diagnosed with hepatocellular carcinoma (HCC) or liver metastases and planned to undergo transarterial radioembolization with 90Y SirSpheres after multidisplinary team discussion.

View Article and Find Full Text PDF

Deciphering the mineral code of urinary stones: A first look at zinc isotopes.

Environ Pollut

December 2024

Nu Instruments, Wrexham Industrial Estate, 74 Clywedog Road South, Wrexham, LL13 9XS, United Kingdom.

Zinc (Zn) is an essential element for all living organisms, and Zn isotopes play a key role in studying the formation of disease. Despite extensive studies on Zn isotopes in healthy and diseased human tissues, the role of Zn isotopes in urinary stones remains unexplored. This study investigates Zn isotopes in 37 urinary stones using multi-collector inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

Coastal sediments are a key contributor to oceanic phosphorus (P) removal, impacting P bioavailability and primary productivity. Vivianite, an Fe(II)-phosphate mineral, can be a major P sink in nonsulfidic, reducing coastal sediments. Despite its importance, vivianite formation processes in sediments remain poorly understood.

View Article and Find Full Text PDF

The conversion of tropical rainforests to agriculture causes population declines and biodiversity loss across taxa. This impacts ants (Formicidae), a crucial tropical group for ecosystem functioning. While biodiversity loss among ants is well documented, the responses of individual ant taxa and their adjustments in trophic strategies to land-use change are little studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!