Towards the mechanical characterisation of unruptured intracranial aneurysms: Numerical modelling of interactions between a deformation device and the aneurysm wall.

J Mech Behav Biomed Mater

Laboratoire de Tribologie et Dynamique des Systèmes, CNRS UMR 5513, Université de Lyon, École Centrale de Lyon, France; ISPB-Faculté de Pharmacie, Université Claude Bernard Lyon 1, Université de Lyon, France. Electronic address:

Published: May 2024

Intracranial aneurysm is a critical pathology related to the arterial wall deterioration. This work is an essential aspect of a large scale project aimed at providing clinicians with a non-invasive patient-specific decision support tool regarding the rupture risk assessment. A machine learning algorithm links the aneurysm shape observed and a database of UIA clinical images associated with in vivo wall mechanical properties and rupture characterisation. The database constitution is derived from a device prototype coupled with medical imaging. It provides the mechanical characterisation of the aneurysm from the wall deformation obtained by inverse analysis based on the variation of luminal volume. Before performing in vivo tests of the device on small animals, a numerical model was built to quantify the device's impact on the aneurysm wall under natural blood flow conditions. As the clinician will never be able to precisely situate the device, several locations were considered. In preparation for the inverse analysis procedure, artery material laws of increasing complexity were studied (linear elastic, hyper elastic Fung-like). Considering all the device locations and material laws, the device induced relative displacements to the Systole peak (worst case scenario with the highest mechanical stimulus linked to the blood flow) ranging from 375 μm to 1.28 mm. The variation of luminal volume associated with the displacements was between 0.95 % and 4.3 % compared to the initial Systole volume of the aneurysm. Significant increase of the relative displacements and volume variations were found with the study of different cardiac cycle moments between the blood flow alone and the device application. For forthcoming animal model studies, Spectral Photon CT Counting, with a minimum spatial resolution of 250 μm, was selected as the clinical imaging technique. Based on this preliminary study, the displacements and associated volume variations (baseline for inverse analyse), should be observable and exploitable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2024.106469DOI Listing

Publication Analysis

Top Keywords

aneurysm wall
12
blood flow
12
mechanical characterisation
8
inverse analysis
8
variation luminal
8
luminal volume
8
device locations
8
material laws
8
relative displacements
8
volume variations
8

Similar Publications

Predicting the evolution of ascending aortic aneurysm (AscAA) growth is a challenge, complicated by the intricate interplay of aortic geometry, tissue behavior, and blood flow dynamics. We investigate a flow-structural growth and remodeling (FSG) model based on the homogenized constrained mixture theory to simulate realistic AscAA growth evolution. Our approach involves initiating a finite element model with an initial elastin insult, driven by the distribution of Time-Averaged Wall Shear Stress (TAWSS) derived from computational fluid dynamics simulations.

View Article and Find Full Text PDF

Aneurysmal Coronary Artery Disease (ACAD) can occur as localized dilations of a segment of one or more coronary arteries or diffuse ectasia-type dilatations of one or more coronaries. Atherosclerosis remains the most common cause of these aneurysms, with Kawasaki Disease being implicated in the Asian population. We present a case of a 62-year-old Asian woman who dies suddenly with no prior symptoms.

View Article and Find Full Text PDF

Pseudoaneurysm of the descending aorta two decades after aortic coarctation repair: a case report.

J Cardiothorac Surg

January 2025

Department of Cardiovascular Surgery, West China Hospital of Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, China.

Background: Pseudoaneurysm after coarctation of the aorta (CoA) repair is a rare but severe complication. Contributing factors may include infection, hypertension, aortic wall weakness, and turbulent blood flow at the repair site.

Case Presentation: A 35-year-old male presented with recurrent episodes of epistaxis and dizziness was admitted to the emergency department.

View Article and Find Full Text PDF

Aneurysm rupture is a life-threatening event, yet its underlying mechanisms remain largely unclear. This study investigated the fracture properties of the thoracic aneurysmatic aorta (TAA) using the symmetry-constraint Compact Tension (symconCT) test and compared results to native and enzymatic-treated porcine aortas' tests. With age, the aortic stiffness increased, and tissues ruptured at lower fracture energy [Formula: see text].

View Article and Find Full Text PDF

The COVID-19 virus not only has significant pathogenicity but also influences the progression of many diseases, altering patient prognosis. Cardiovascular diseases, particularly aortic aneurysms, are among the most life-threatening conditions. COVID-19 infection is reported to accelerate the progression of abdominal aortic aneurysms (AAAs) and increase the risk of rupture; however, a comprehensive understanding of the underlying mechanisms remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!