Muscle-invasive bladder cancer (MIBC) is a disease characterized by molecular and clinical heterogeneity, posing challenges in selecting the most appropriate treatment in clinical settings. Considering the significant role of CD4 T cells, there is an emerging need to integrate CD4 T cells with molecular subtypes to refine classification. We conducted a comprehensive study involving 895 MIBC patients from four independent cohorts. The Zhongshan Hospital (ZSHS) and The Cancer Genome Atlas (TCGA) cohorts were included to investigate chemotherapeutic response. The IMvigor210 cohort was included to assess the immunotherapeutic response. NCT03179943 was used to evaluate the clinical response to a combination of immune checkpoint blockade (ICB) and chemotherapy. Additionally, we evaluated genomic characteristics and the immune microenvironment to gain deeper insights into the distinctive features of each subtype. We unveiled four immune-molecular subtypes, each exhibiting distinct clinical outcomes and molecular characteristics. These subtypes include luminal CD4 T, which demonstrated benefits from both immunotherapy and chemotherapy; luminal CD4 T, characterized by the highest level of fibroblast growth factor receptor 3 (FGFR3) mutation, thus indicating potential responsiveness to FGFR inhibitors; basal CD4 T, which could benefit from a combination of ICB and chemotherapy; and basal CD4 T, characterized by an immune suppression microenvironment and likely to benefit from transforming growth factor-β (TGF-β) inhibition. This immune-molecular classification offers new possibilities for optimizing therapeutic interventions in MIBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007017PMC
http://dx.doi.org/10.1111/cas.16119DOI Listing

Publication Analysis

Top Keywords

cd4 cells
12
cells molecular
8
muscle-invasive bladder
8
bladder cancer
8
icb chemotherapy
8
luminal cd4
8
cd4 characterized
8
basal cd4
8
cd4
6
integration cd4
4

Similar Publications

Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy.

Apoptosis

January 2025

Department of Breast Cancer Surgery, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.

Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Immunotherapy, a promising therapeutic approach, often faces challenges due to the immunosuppressive tumor microenvironment. This study explores the innovative use of CRISPR-Cas9 technology in conjunction with FCPCV nanoparticles to target and edit the C-C Motif Chemokine Ligand 5 (CCL5) gene, aiming to improve the efficacy of breast cancer immunotherapy.

View Article and Find Full Text PDF

Alcohol drinking leads to sex-dependent differentiation of T cells.

Eur J Trauma Emerg Surg

January 2025

Department of Trauma Surgery and Orthopedics, Goethe University, University Hospital, Frankfurt, Germany.

Objective: Global per capita alcohol consumption is increasing, posing significant socioeconomic and medical challenges also due to alcohol-related traumatic injuries but also its biological effects. Trauma as a leading cause of death in young adults, is often associated with an increased risk of complications, such as sepsis and multiple organ failure, due to immunological imbalances. Regulatory T cells play a crucial role in maintaining immune homeostasis by regulating the inflammatory response.

View Article and Find Full Text PDF

Immunity suffers a function deficit during aging, and the incidence of cancer is increased in the elderly. However, most cancer models employ young mice, which are poorly representative of adult cancer patients. We have previously reported that Triple-Therapy (TT), involving antigen-presenting-cell activation by vinorelbine and generation of TCF1-stem-cell-like T cells (scTs) by cyclophosphamide significantly improved anti-PD-1 efficacy in anti-PD1-resistant models like Triple-Negative Breast Cancer (TNBC) and Non-Hodgkin's Lymphoma (NHL), due to T-cell-mediated tumor killing.

View Article and Find Full Text PDF

Background: Oncolytic viruses (OVs) are promising immunotherapeutics to treat immunologically cold tumors. However, research on the mechanism of action of OVs in humans and clinically relevant biomarkers is still sparse. To induce strong T-cell responses against solid tumors, TILT-123 (Ad5/3-E2F-d24-hTNFa-IRES-hIL2, igrelimogene litadenorepvec) was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!