Recent work by our laboratory and others indicates that co-display of multiple antigens on protein-based nanoparticles may be key to induce cross-reactive antibodies that provide broad protection against disease. To reach the ultimate goal of a universal vaccine for seasonal influenza, a mosaic influenza nanoparticle vaccine (FluMos-v1) was developed for clinical trial (NCT04896086). FluMos-v1 is unique in that it is designed to co-display four recently circulating haemagglutinin (HA) strains; however, current vaccine analysis techniques are limited to nanoparticle population analysis, thus, are unable to determine the valency of an individual nanoparticle. For the first time, we demonstrate by total internal reflection fluorescence microscopy and supportive physical-chemical methods that the co-display of four antigens is indeed achieved in single nanoparticles. Additionally, we have determined percentages of multivalent (mosaic) nanoparticles with four, three, or two HA proteins. The integrated imaging and physicochemical methods we have developed for single nanoparticle multivalency will serve to further understand immunogenicity data from our current FluMos-v1 clinical trial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894272PMC
http://dx.doi.org/10.1038/s41598-024-54876-2DOI Listing

Publication Analysis

Top Keywords

single nanoparticle
8
clinical trial
8
nanoparticle
5
mosaic quadrivalent
4
quadrivalent influenza
4
vaccine
4
influenza vaccine
4
vaccine single
4
nanoparticle characterization
4
characterization work
4

Similar Publications

Bacteriophage M13KE as a Nanoparticle Platform to Display and Deliver a Pathogenic Epitope: Development of an Effective Porcine Epidemic Diarrhoea Virus Vaccine.

Microb Pathog

January 2025

Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China. Electronic address:

Porcine epidemic diarrhoea virus (PEDV) is a porcine enteric coronavirus, outbreaks and epidemics of which have caused huge economic losses to the livestock industry. The disadvantage of existing PEDV vaccines is that the unstable efficacy and high cost limit their widespread use. Therefore, there is an urgent need to develop a recombinant transgenic vaccine candidate for PEDV.

View Article and Find Full Text PDF

Poly-N-isopropylacrylamide (PNIPAm), a thermorresponsive polymer, highly soluble in water below its lower critical solution temperature (LCST), is widely used in biomedical applications like drug delivery. Being able to measure PNIPAm size and aggregation state in solution quickly, inexpensively, and accurately below the LCST is critical when stoichiometric particle or molecular ratios are required. Dynamic light scattering (DLS) is probably the most widely available, and inexpensive nanoparticle sizing technique, but there are limitations with respect to sample polydispersity.

View Article and Find Full Text PDF

Environmental exposure to single and combined ZnO and TiO nanoparticles: Implications for rainbow trout gill immune functions and microbiota.

Chemosphere

January 2025

Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium.

ZnO and TiO nanoparticles (NPs) are widely employed for their antibacterial properties, but their potential environmental impact is raising concerns. This study aimed to assess their single and combined effects at environmentally relevant concentrations (210 μg L) on rainbow trout (Oncorhynchus mykiss) gills microbiota and immune functions. 16S rRNA gene sequencing performed after 5 and 28 days of exposure suggests that TiO NPs had a more immediate impact on bacterial diversity, while prolonged exposure to the mixture altered community composition.

View Article and Find Full Text PDF

Mapping organism-wide single cell mRNA expression linked to extracellular vesicle biogenesis, secretion and cargo.

Function (Oxf)

January 2025

Department of Health and Exercise Science, College of Health and Human Sciences, Colorado State University, Fort Collins, CO, USA.

Extracellular vesicles (EVs) are functional lipid-bound nanoparticles trafficked between cells and found in every biofluid. It is widely claimed that EVs can be secreted by every cell, but the quantity and composition of these EVs can differ greatly among cell types and tissues. Defining this heterogeneity has broad implications for EV-based communication in health and disease.

View Article and Find Full Text PDF

T cell lymphoma constitutes a complex group of diseases, characterized by heterogeneous molecular features and clinical symptoms, and a dismal outcome no matter the therapeutic strategy chosen. In an attempt to improve patients' survival chances, treatment combinations (chemotherapy, radiotherapy, immunotherapy, gene therapy and thermotherapy) have been tested for their synergistic effects that may dramatically improve outcomes and reduce the side effects of each single modality treatment when therapeutic effects add up while side effects are distributed. In this context, nanoscale drug delivery agents have been developed and exploited to enhance the release of drugs in the treatment of several diseases, showing potential benefits in terms of pharmaceutical flexibility, selectivity, dose reduction and minimization of adverse effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!