The orthogonal frequency division multiplexing (OFDM) system applies coherent demodulation to achieve high spectral efficiency at a bandwidth cost by the pilot tones. Considering the statistical property of the down-link channels to the users, it can be found that there is an opportunity to reduce the pilot number in the conventional designs while maintaining the same signal demodulation performances. The design philosophy involves utilizing the difference of the channel coherent bandwidths (CCBs) by allocating data to appropriate positions upon the fact that different CCBs can tolerate different minimized pilot spacing. The proposed design allows each user's equipment's data not to exceed its CCB with the sparser pilots. The theoretical analysis is carried out based on the concept of channel frequency response using linear interpolation with channel estimation employing the least squares (LS) method. The gain of the proposed method is demonstrated in terms of the ergodic capacities and confirmed by the simulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894292 | PMC |
http://dx.doi.org/10.1038/s41598-024-55153-y | DOI Listing |
Sensors (Basel)
January 2025
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy.
This study investigates the potential of deploying a neural network model on an advanced programmable logic controller (PLC), specifically the Finder Opta™, for real-time inference within the predictive maintenance framework. In the context of Industry 4.0, edge computing aims to process data directly on local devices rather than relying on a cloud infrastructure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Advanced Micro-/Nano- Devices Lab, Department of Systems Design Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1, Canada.
Existing biomedical imaging modalities are often restricted by their substantial size, high costs, and potential risks associated with ionizing radiation exposure. Given these challenges, there is an urgent need for innovative imaging systems that not only excel in detection performance but are also compact, cost-effective, and ensure safety for biomedical applications. In response to these requirements, our research introduces an advanced terahertz (THz) microbolometer array imaging system (MAIS), specifically engineered for biomedical detection.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China.
Optically-pumped magnetometer (OPM) has been of increasing interest for biomagnetic measurements due to its low cost and portability compared with superconducting quantum interference devices (SQUID). Miniaturized spin-exchange-relaxation-free (SERF) OPMs typically have limited bandwidth (less than a few hundred Hertz), making it difficult to measure high-frequency biomagnetic signals such as the magnetocardiography (MCG) signal of the mouse. Existing experiments mainly use SQUID systems to measure the signal.
View Article and Find Full Text PDFFiber Bragg grating (FBG) accelerometers are extensively utilized across various industries. For a high-performance FBG accelerometer interrogator, achieving low cost, wide range, multi-channel capability, high precision, and high-speed demodulation is critical. This paper proposes a chip-level wavelength demodulation method for FBG accelerometers utilizing a cascaded micro-ring resonator (MRR) array.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Institute of Zhejiang University - Quzhou, No. 99 Zheda Road, Quzhou 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. Electronic address:
The trichloroethylene production industry generates high-boiling-point solid residues during rectification, which contain high concentrations of chlorinated contaminants, particularly hexachlorobutadiene (HCBD). Traditionally, these distillation residues are managed through co-incineration or landfilling, leading to environmental and economic challenges. In this study, we present a rapid and environmentally friendly electrothermal approach for both detoxifying and upcycling distillation residue into graphene-based electromagnetic wave (EMW) absorbing materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!