Genetically modified crops (GMOs) have led to significant, if not revolutionary, agricultural advances. The development of GMOs requires necessary regulations, which depend on the detection of GMOs. A sensitive and specific biosensor for the detection of transgenic crops is crucial to improve the detection efficiency of GMOs. Here, we developed a CRISPR/Cas12a-mediated entropy-driven electrochemiluminescence (ECL) biosensor for the sensitive and specific detection of MON810, the world's most widely used transgenic insect-resistant maize. We designed two crRNAs to activate CRISPR/Cas12a, allowing it to cut non-specific single strands, and we modified the DNA tetrahedron (DT) on the surface of the gold electrode to diminish non-specific adsorption. The entropy-driven chain displacement reaction with the target DNA takes place for amplification. After optimization, the biosensor has satisfactory accuracy and selectivity, with a linear range of ECL of 1-106 fM and a limit of detection (LOD) of 3.3 fM by the 3σ method. The biosensor does not require polymerase chain reaction (PCR) amplification or complex sample processing, which dramatically improves transgenic crop detection efficiency. This new biosensor achieves rapid, sensitive, and highly specific detection of transgenic crops, and has great potential for large-scale field detection of transgenic crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.342290 | DOI Listing |
Alzheimers Dement
December 2024
Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Background: Protein misfolding is a key pathological phenomenon driving neurodegenerative diseases that affect millions of people. Visualizing this misfolding process with smart imaging probes would greatly facilitate early diagnosis, etiology elucidation, disease progression monitoring, and drug discovery of neurodegeneration. Although numerous probes have been reported, several unmet needs still exist.
View Article and Find Full Text PDFTheranostics
January 2025
Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
Alzheimer's Disease (AD) is the most common form of dementia and one of the leading causes of death. AD is known to be correlated to tortuosity in the microvasculature as well as decreases in blood flow throughout the brain. However, the mechanisms behind these changes and their causal relation to AD are poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, No.16, Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, 100700, China.
Following prolonged exposure to hypoxic conditions, for example, due to ascent to high altitude, aging or stroke, cognitive deficits can develop. The exact nature and genesis of hypoxia-induced cognitive deficits remain unresolved. Curcumin has been reported to stimulate neurogenesis and reduce neuronal degeneration.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia.
Alkaline phosphatase (ALP) of the PhoA family is an important enzyme in mammals, microalgae, and certain marine bacteria. It plays a crucial role in the dephosphorylation of lipopolysaccharides (LPS) and nucleotides, which overstimulate cell signaling pathways and cause tissue inflammation in animals and humans. Insufficient ALP activity and expression levels have been linked to various disorders.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
Plasma membrane intrinsic proteins (PIPs), one sub-family of aquaporins (AQPs), are responsible for plant abiotic stress responses. However, little information is currently available about the stress responsiveness of the promoter in vegetable pea. In the present study, one novel promoter of which shared high similarity to the -type from other plants, was isolated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!