Sulfasalazine needs frequent daily dosing and the administration of numerous tablets per day pose challenges to patient compliance, contributing to increased adverse effects and difficulties in disease control. These inconveniences result in less effective treatment for arthritis associated with inflammatory bowel disease i.e. ulcerative colitis etc. To improve drug bioavailability, a delayed-release mechanism that releases the drug at the colon is necessary. To develop and optimize colon-targeted controlled release bilayer tablets coated with pH-dependent polymers. The bilayer tablets containing the immediate release part and sustained release part were developed. The tablets were coated with enteric-coated with Eudragit® S-100 and l-100 to achieve release in the colon. Granule properties and tablets were evaluated. The physicochemical parameters of the tablets were evaluated including, stability study, and drug release in 0.1 N HCl (pH 1.2), pH 6.8 phosphate buffer, pH 7.4 phosphate buffer for 2, 1, and up to 24 h respectively. Radiographic imaging and in vivo pharmacokinetic studies were also done in Rabbits. The bilayer tablets containing immediate and sustained release were successfully developed for the colon targeting. The granule properties were found within the acceptable range indicating good flow properties. The physicochemical properties of the tablets were also found acceptable. The tablets did not show release in 0.1 N HCl and 6.8 phosphate buffer but drug release was found under control in the 7.4 pH buffer. Sulfasalazine coated bilayer tablets were found stable and no significant changes were observed in the stability studies. Based on the X-ray studies, the formulated tablet remained discernible in the stomach, small intestine, and colon for a duration of up to 24 h. Finally, by the 32nd hour, the tablet was no longer visible in the X-ray examination, leading to the conclusion of complete drug release. The drug concentration in plasma remained within the therapeutic range for up to 24 h in vivo. These novel formulations present substantial advantages, providing prolonged targeted drug release and reducing systemic adverse effects. The results suggest promising potential for treating arthritis in Inflammatory bowel disease (IBD) patients, offering a solution to current delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2024.02.019DOI Listing

Publication Analysis

Top Keywords

bilayer tablets
20
drug release
16
phosphate buffer
12
tablets
11
release
10
treatment arthritis
8
arthritis associated
8
adverse effects
8
inflammatory bowel
8
bowel disease
8

Similar Publications

A Quantitative Chemometric Study of Pharmaceutical Tablet Formulations Using Multi-Spectroscopic Fibre Optic Probes.

Pharmaceuticals (Basel)

December 2024

College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.

Two fibre optic probes were custom designed to perform Raman and near-infrared spectroscopic measurements. Our long-term objective is to develop a non-destructive tool able to collect data in hard-to-access locations for real-time analysis or diagnostic purposes. This study evaluated the quantitative performances of Probe A and Probe B using model pharmaceutical tablets.

View Article and Find Full Text PDF

Selective laser sintering for printing bilayer tablets.

Int J Pharm

December 2024

Delta Pharmaceutics Ltd., Chatham, Kent ME4 4TB, UK; Centre for Research Innovation (CRI), University of Greenwich, Chatham ME4 4TB, UK. Electronic address:

In this study Selective Laser Sintering (SLS) was used to produce bilayer tablets containing rosuvastatin and acetylsalicylic acid. Initially, monolithic tablets of each drug were manufactured using different laser intensities in order to identify their impact on the tablet's dissolution, friability and hardness. After the optimization, the final bilayer tablet was fabricated using a new method, that allowed the printing using different powder blends.

View Article and Find Full Text PDF

Release-modulating mechanism and comparative pharmacokinetics in beagle dogs of bethanechol-loaded oral dosage forms.

Int J Pharm

January 2025

Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea. Electronic address:

Bethanechol chloride (BTC), a quaternary ammonium compound used in bladder dysfunction treatment, requires challenges in developing optimal oral dosage forms due to its high water-solubility, short half-life, rapid elimination and four times a day administration. The aim of this study was to develop optimal BTC-loaded oral dosage forms that could provide both rapid onset and sustained therapeutic effects while reducing the frequency of conventional four-times-daily dosing (Mytonin® tablets). Four different BTC-loaded oral dosage forms were designed including gastro-retentive tablet (GRT), controlled-release tablet (CRT), bilayer tablet (BLT), and tablet-in-tablet (TIT).

View Article and Find Full Text PDF

For compendial dissolution testing of solid dosage forms, media volumes of 500 to 900 mL are used in apparatus I and II to ensure sink conditions. However, these volumes are considerably larger than those in the gastrointestinal tract. Thus, the experiments are not biomimetic and possibly not suitable for biopredictive dissolution testing.

View Article and Find Full Text PDF

Organic macromolecules transport a significant proportion of the calcium precursor for nacre formation.

Acta Biomater

January 2025

Department of Stratigraphy and Paleontology, Faculty of Sciences, University of Granada, Spain; Andalusian Earth Sciences Institute, CSIC-University of Granada, Armilla, Spain.

The mechanism of nacre formation in gastropods involves a vesicular system that transports organic and mineral precursors from the mantle epithelium to the mineralization chamber. Between them lies the surface membrane, a thick organic structure that covers the mineralization chamber and the forming nacre. The surface membrane is a dynamic structure that grows by the addition of vesicles on the outer side and recedes by the formation of interlamellar membranes on the inner side.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!