Fluorophore and nanozyme-functionalized DNA walking: A dual-mode DNA logic biocomputing platform for microRNA sensing in clinical samples.

Biosens Bioelectron

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China. Electronic address:

Published: May 2024

Inspired by the programmability and modifiability of nucleic acids, point-of-care (POC) diagnostics for nucleic acid target detection is evolving to become more diversified and intelligent. In this study, we introduce a fluorescent and photothermal dual-mode logic biosensing platform that integrates catalytic hairpin assembly (CHA), toehold-mediated stand displacement reaction (SDR) and a DNA walking machine. Dual identification and signal reporting modules are incorporated into DNA circuits, orchestrated by an AND Boolean logic gate operator and magnetic beads (MBs). In the presence of bispecific microRNAs (miRNAs), the AND logic gate activates, driving the DNA walking machine, and facilitating the collection of hairpin DNA stands modified with FAM fluorescent group and CeO@Au nanoparticles. The CeO@Au nanoparticles, served as a nanozyme, can oxidize TMB into oxidation TMB (TMBox), enabling a near-infrared (NIR) laser-driven photothermal effect following the magnetic separation of MBs. This versatile platform was employed to differentiate between plasma samples from breast cancer patients, lung cancer patients, and healthy donors. The thermometer-readout transducers, derived from the CeO@Au@DNA complexes, provided reliable results, further corroborated by fluorescence assays, enhancing the confidence in the diagnostics compared to singular detection method. The dual-mode logic biosensor can be easily customized to various nucleic acid biomarkers and other POC signal readout modalities by adjusting recognition sequences and modification strategies, heralding a promising future in the development of intelligent, flexible diagnostics for POC testing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2024.116137DOI Listing

Publication Analysis

Top Keywords

dna walking
12
nucleic acid
8
dual-mode logic
8
walking machine
8
logic gate
8
ceo@au nanoparticles
8
cancer patients
8
dna
6
logic
5
fluorophore nanozyme-functionalized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!