While mutational processes operating in the Escherichia coli genome have been revealed by multiple laboratory experiments, the contribution of these processes to accumulation of bacterial polymorphism and evolution in natural environments is unknown. To address this question, we reconstruct signatures of distinct mutational processes from experimental data on E. coli hypermutators, and ask how these processes contribute to differences between naturally occurring E. coli strains. We show that both mutations accumulated in the course of evolution of wild-type strains in nature and in the lab-grown nonmutator laboratory strains are explained predominantly by the low fidelity of DNA polymerases II and III. By contrast, contributions specific to disruption of DNA repair systems cannot be detected, suggesting that temporary accelerations of mutagenesis associated with such disruptions are unimportant for within-species evolution. These observations demonstrate that accumulation of diversity in bacterial strains in nature is predominantly associated with errors of DNA polymerases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10995721PMC
http://dx.doi.org/10.1093/gbe/evae035DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
coli strains
8
mutational processes
8
strains nature
8
dna polymerases
8
strains
5
mutational signatures
4
signatures wild
4
wild type
4
type escherichia
4

Similar Publications

Metabolic Engineering of Corynebacterium glutamicum for High-Level Production of 1,5-Pentanediol, a C5 Diol Platform Chemical.

Adv Sci (Weinh)

December 2024

Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.

The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway.

View Article and Find Full Text PDF

Background: Sepsis represents the most prevalent infectious complication and the primary cause of mortality in myeloproliferative neoplasms (MPN). The risk of sepsis and the difficulty of treatment are significantly increased in MPN patients due to the need for immunomodulators and antibiotics.

Case Presentation: On June 9, 2023, a 69-year-old male was admitted to the hospital.

View Article and Find Full Text PDF

Continued efforts to discover new antibacterial molecules are critical to achieve a robust pre-clinical pipeline for new antibiotics. Screening of compound or natural product extract libraries remains a widespread approach and can benefit from the development of whole cell assays that are robust, simple and versatile, and allow for high throughput testing of antibacterial activity. In this study, we created and validated two bioluminescent reporter strains for high-throughput screening, one in Pseudomonas aeruginosa, and another in a hyperporinated and efflux-deficient Escherichia coli.

View Article and Find Full Text PDF

Optimization of fermentation conditions for whole cell catalytic synthesis of D-allulose by engineering Escherichia coli.

Sci Rep

December 2024

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.

D-allulose/D-psicose is a significant rare sugar with broad applications in the pharmaceutical, food, and other industries. In this study, we cloned the D-allulose 3-epimerase (DPEase) gene from Arthrobacter globiformis M30, using pET22b as the vector. The recombinant E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!