Autophagy is a cellular process that involves the fusion of autophagosomes and lysosomes to degrade damaged proteins or organelles. Triglycerides are hydrolyzed by autophagy, releasing fatty acids for energy through mitochondrial fatty acid oxidation (FAO). Inhibited mitochondrial FAO induces autophagy, establishing a crosstalk between lipid catabolism and autophagy. Peroxisome proliferator-activated receptor α (PPARα), a transcription factor, stimulates lipid catabolism genes, including fatty acid transport and mitochondrial FAO, while also inducing autophagy through transcriptional regulation of transcription factor EB (TFEB). Therefore, the study explores whether PPARα regulates autophagy through TFEB transcriptional control or mitochondrial FAO. In aquaculture, addressing liver lipid accumulation in fish is crucial. Investigating the link between lipid catabolism and autophagy is significant for devising lipid-lowering strategies and maintaining fish health. The present study investigated the impact of dietary fenofibrate and L-carnitine on autophagy by activating Pparα and enhancing FAO in Nile tilapia (Oreochromis niloticus), respectively. The dietary fenofibrate and L-carnitine reduced liver lipid content and enhanced ATP production, particularly fenofibrate. FAO enhancement by L-carnitine showed no changes in autophagic protein levels and autophagic flux. Moreover, fenofibrate-activated Pparα promoted the expression and nuclear translocation of Tfeb, upregulating autophagic initiation and lysosomal biogenesis genes. Pparα activation exhibited an increasing trend of LC3II protein at the basal autophagy and cumulative p62 protein trends after autophagy inhibition in zebrafish liver cells. These data show that Pparα activation-induced autophagic flux should be independent of lipid catabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-024-01327-4 | DOI Listing |
J Control Release
January 2025
Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Bioneer A/S, Kogle Allé 2, Hørsholm 2970, Denmark. Electronic address:
The ability to predict the absorption of exenatide (Ex), a GLP-1 analogue, after oral dosing to rats in self-nanoemulsifying drug delivery systems (SNEDDS), using in vitro methods, was assessed. Ex was complexed with soybean phosphatidylcholine (SPC) prior to loading into SNEDDS. A design of experiments (DoE) approach was employed to develop SNEDDS incorporating medium-chain triglycerides (MCT), medium-chain mono- and diglycerides (MGDG), Kolliphor® RH40, and monoacyl phosphatidylcholine.
View Article and Find Full Text PDFMicroglia modulate their cell state in response to various stimuli. Changes to cellular lipids often accompany shifts in microglial cell state, but the functional significance of these metabolic changes remains poorly understood. In human induced pluripotent stem cell-derived microglia, we observed that both extrinsic activation (by lipopolysaccharide treatment) and intrinsic triggers (the Alzheimer's disease-associated genotype) result in accumulation of triglyceride-rich lipid droplets.
View Article and Find Full Text PDFJHEP Rep
January 2025
Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Background & Aims: Hepatic steatosis, characterized by lipid accumulation in hepatocytes, is a key diagnostic feature in patients with chronic hepatitis C virus (HCV) infection. This study aimed to clarify the involvement of phospholipid metabolic pathways in the pathogenesis of HCV-induced steatosis.
Methods: The expression and distribution of lipid species in the livers of human liver chimeric mice were analyzed using imaging mass spectrometry.
Aquat Toxicol
December 2024
Department of Chemistry and CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal. Electronic address:
In this study, untargeted Nuclear Magnetic Resonance (NMR) metabolomics was applied for the first time, to our knowledge, to assess the metabolic impact of direct and transgenerational exposure (F0 and F3 generations, respectively) of amphipods Gammarus locusta to simvastatin (SIM), a pharmaceutical widely prescribed for the treatment of hypercholesterolemia. Results revealed the important gender-dependent nature of each of these effects. Directly exposed males showed enhanced glucose catabolism and tricarboxylic acid (TCA) cycle activity, in tandem with adaptations in osmotic regulation and glyoxylate metabolism.
View Article and Find Full Text PDFMeat Sci
January 2025
São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil. Electronic address:
This study aimed to identify mRNA isoforms that were expressed differently in the muscle tissue of Nellore cattle based on their intramuscular fatty acid profile. Forty-eight young bulls were used to quantify beef fatty acids (FA) and perform RNA sequencing analysis. The young bulls were divided into three different groups based on quantifying FA using k-means analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!