The advancement of hybrid technology plays a crucial role in addressing yield plateau and diminishing resources in rice cultivating regions. The knowledge of genetic diversity among parental lines is a prerequisite for effective hybrid breeding program. In the current study, a set of 66 parental lines was studied for diversity based on both morphological characters and microsatellite SSR markers. The genetic variability parameters unveiled that number of productive tillers per plant, single plant yield and hundred grain weight exhibited additive gene action. Mahalanobis D statistics grouped the genotypes into ten clusters based on yield and grain traits. The principal component analysis identified four PCs with eigen value more than one accounting for 71.28% of cumulative variance. The polymorphic SSR markers produced 122 alleles among which the marker RM474 recorded the highest values for Polymorphic Information Content (0.83) and heterozygosity index (0.85). The genotypes were assembled in seven clusters based on jaccard distances using the Unweighted Pair Group method with Arithmetic Mean (UPGMA). The population structure divided the entire population into 3 subpopulations. In both clustering, there was difference in the assembling of genotypes, but, good performing genotypes identified through PCA were positioned in different clusters in both approaches. The genotypes CBSN 495 and CBSN 494 located in different clusters were identified as the potential restorers for high yielding and short duration hybrids. The hybridization among CRR Dhan 310, CRR Dhan 315, IR64 DRT, CB 17135 and WGL 347 can be performed to develop climate smart varieties with improved nutrition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894128 | PMC |
http://dx.doi.org/10.1186/s12284-024-00691-2 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Institute for Applied Mathematics, University of Bonn, Bonn, Germany.
Purpose: To quantify outer retina structural changes and define novel biomarkers of inherited retinal degeneration associated with biallelic mutations in RPE65 (RPE65-IRD) in patients before and after subretinal gene augmentation therapy with voretigene neparvovec (Luxturna).
Methods: Application of advanced deep learning for automated retinal layer segmentation, specifically tailored for RPE65-IRD. Quantification of five novel biomarkers for the ellipsoid zone (EZ): thickness, granularity, reflectivity, and intensity.
ACS Chem Biol
January 2025
Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
As an important receptor in a host's immune and metabolic systems, NOD1 is usually activated by Gram-negative bacteria having -diaminopimelic acid (-DAP) in their peptidoglycan (PGN). But some atypical Gram-positive bacteria also contain -DAP in their PGN, giving them the potential to activate NOD1. The prevalence of -DAP-type Gram-positive bacteria in the gut, however, remains largely unknown.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
In the Drosophila brain, neuronal diversity originates from approximately 100 neural stem cells, each dividing asymmetrically. Precise mapping of cell lineages at the single-cell resolution is crucial for understanding the mechanisms that direct neuronal specification. However, existing methods for high-resolution lineage tracing are notably time-consuming and labor-intensive.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing, People's Republic of China.
Mosaic analysis with double markers (MADM) is a powerful in vivo lineage tracing technique. It utilizes Cre recombinase-dependent interchromosomal recombination to restore the stable expression of two fluorescent proteins sparsely in individual dividing stem or progenitor cells and their progenies. Here, we describe the application of this technique for quantitative lineage analysis of radial glial progenitors in the developing mouse neocortex at the single-cell resolution.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Sorbonne Université, Institut du Cerveau (Paris Brain Institute) ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.
Somatic mosaic variants, and especially somatic single nucleotide variants (sSNVs), occur in progenitor cells in the developing human brain frequently enough to provide permanent, unique, and cumulative markers of cell divisions and clones. Here, we describe an experimental workflow to perform lineage studies in the human brain using somatic variants. The workflow consists in two major steps: (1) sSNV calling through whole-genome sequencing (WGS) of bulk (non-single-cell) DNA extracted from human fresh-frozen tissue biopsies, and (2) sSNV validation and cell phylogeny deciphering through single nuclei whole-genome amplification (WGA) followed by targeted sequencing of sSNV loci.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!