The M-line of striated muscle is a complex structure that anchors myosin-containing thick filaments and also participates in signaling and proteostasis. While the physical associations among many M-line components have been defined, the mechanism of thick filament attachment is not completely understood. In Caenorhabditis elegans, myosin A is essential for viability and forms the site of M-line attachment at the center of the filament, whereas myosin B forms the filament arms. Using a mutant myosin A that forms ectopic filaments, we examined interactions between myosin A and M-line proteins in intact muscle cells. Ectopic myosin A recruits the giant kinase UNC-89/obscurin, a presumed scaffolding protein, in an interaction that requires the zinc-finger protein UNC-98, but not UNC-82/NUAK, UNC-97/PINCH, or UNC-96. In myosin A mutants, UNC-89/obscurin patterning is highly defective in embryos and adults. A chimeric myosin containing 169 residues of the myosin A C-terminal rod, coincident with the UNC-98/ZnF binding site, is sufficient for colocalization of UNC-89/obscurin and UNC-98/ZnF in M-line structures whereas a myosin chimera lacking these residues colocalizes with UNC-89/obscurin in M-lines that lack UNC-98. Thus, at least two myosin A rod regions contribute independently to M-line organization. We hypothesize that these M-line-organizing functions correspond to the essential "filament initiation function" performed by this isoform.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cm.21846DOI Listing

Publication Analysis

Top Keywords

myosin
10
myosin rod
8
zinc-finger protein
8
protein unc-98
8
thick filament
8
striated muscle
8
myosin forms
8
m-line
7
unc-89/obscurin
5
sequences myosin
4

Similar Publications

Purpose: Reperfusion of the ischaemic heart is essential to limit myocardial infarction. However, reperfusion can cause cardiomyocyte hypercontracture. Recently, cardiac myosin-targeted inhibitors (CMIs), such as Mavacamten (MYK-461) and Aficamten (CK-274), have been developed to treat patients with cardiac hypercontractility.

View Article and Find Full Text PDF

MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation.

J Cell Biol

March 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.

View Article and Find Full Text PDF

Aims: In light of recent advances in imaging techniques, molecular understanding and therapeutic options in hypertrophic cardiomyopathy (HCM), we performed a systematic review of current guidelines for the diagnosis and management of HCM in order to identify consensus and discrepant areas in the clinical practice guidelines.

Methods And Results: We systematically reviewed the English language guidelines and recommendations for the management of HCM in adults. MEDLINE and EMBASE databases were searched for guidelines published in the last 10 years.

View Article and Find Full Text PDF

Hibernating brown bears, due to a drastic reduction in metabolic rate, show only moderate muscle wasting. Here, we evaluate if ATPase activity of resting skeletal muscle myosin can contribute to this energy sparing. By analyzing single muscle fibers taken from the same bears, either during hibernation or in summer, we find that fibers from hibernating bears have a mild decline in force production and a significant reduction in ATPase activity.

View Article and Find Full Text PDF

Myosin-VIIA (MYO7A) is an unconventional myosin responsible for syndromic (Usher 1B) or nonsyndromic forms of deafness in humans when mutated. In the cochlea, MYO7A is expressed in hair cells, where it is believed to act as the motor protein tensioning the mechanoelectrical transducer (MET) channels, thus setting their resting open probability (). However, direct evidence for this unique role for an unconventional myosin in mature hair cells is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!