In modern urban traffic systems, intersection monitoring systems are used to monitor traffic flows and track vehicles by recognizing license plates. However, intersection monitors often produce motion-blurred images because of the rapid movement of cars. If a deep learning network is used for image deblurring, the blurring of the image can be eliminated first, and then the complete vehicle information can be obtained to improve the recognition rate. To restore a dynamic blurred image to a sharp image, this paper proposes a multi-scale modified U-Net image deblurring network using dilated convolution and employs a variable scaling iterative strategy to make the scheme more adaptable to actual blurred images. Multi-scale architecture uses scale changes to learn the characteristics of different scales of images, and the use of dilated convolution can improve the advantages of the receptive field and obtain more information from features without increasing the computational cost. Experimental results are obtained using a synthetic motion-blurred image dataset and a real blurred image dataset for comparison with existing deblurring methods. The experimental results demonstrate that the image deblurring method proposed in this paper has a favorable effect on actual motion-blurred images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894552 | PMC |
http://dx.doi.org/10.1177/00368504241231161 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!