A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications. | LitMetric

Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications.

Sensors (Basel)

Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 621301, Taiwan.

Published: February 2024

GeSn alloys have recently emerged as complementary metal-oxide-semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great promise for optoelectronic applications. This study theoretically analyses Ge-capped GeSn pyramid quantum dots (QDs) on Ge substrates to explore their potential for such applications. Theoretical models are presented to calculate the effects of the Sn content and the sizes of the GeSn QDs on the strain distributions caused by lattice mismatch, the band structures, transition energies, wavefunctions of confined electrons and holes, and transition probabilities. The bandgap energies of the GeSn QDs decrease with the increasing Sn content, leading to higher band offsets and improved carrier confinement, in addition to electron-hole wavefunction overlap. The GeSn QDs on the Ge substrate provide crucial type-I alignment, but with a limited band offset, thereby decreasing carrier confinement. However, the GeSn QDs on the Ge substrate show a direct bandgap at higher Sn compositions and exhibit a ground-state transition energy of ~0.8 eV, rendering this system suitable for applications in the telecommunication window (1550 nm). These results provide important insights into the practical feasibility of GeSn QD systems for optoelectronic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10893084PMC
http://dx.doi.org/10.3390/s24041263DOI Listing

Publication Analysis

Top Keywords

gesn qds
16
optoelectronic applications
12
gesn
10
gesn quantum
8
quantum dots
8
carrier confinement
8
qds substrate
8
applications
6
qds
5
theoretical analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!