This paper explores the energy-intensive cement industry, focusing on a plant in Greece and its mill and kiln unit. The data utilized include manipulated, non-manipulated, and uncontrolled variables. The non-manipulated variables are computed based on the machine learning (ML) models and selected by the minimum value of the normalized root mean square error () across nine (9) methods. In case the distribution of the data displayed in the user interface changes, the user should trigger the retrain of the AI models to ensure their accuracy and robustness. To form the objective function, the expert user should define the desired weight for each manipulated or non-manipulated variable through the user interface (UI), along with its corresponding constraints or target value. The user selects the variables involved in the objective function based on the optimization strategy, and the evaluation is based on the comparison of the optimized and the active value of the objective function. The differential evolution (DE) method optimizes the objective function that is formed by the linear combination of the selected variables. The results indicate that using DE improves the operation of both the cement mill and kiln, yielding a lower objective function value compared to the current values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10892291PMC
http://dx.doi.org/10.3390/s24041225DOI Listing

Publication Analysis

Top Keywords

objective function
24
mill kiln
8
manipulated non-manipulated
8
user interface
8
objective
6
function
6
user
5
data-driven models
4
models user-defined
4
user-defined optimization
4

Similar Publications

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

A novel exercise protocol for cardiac rehabilitation aerobic (CRA) has been developed by Hebei Sport University, demonstrating efficacy in patients with coronary heart disease (CHD). The objective of this study was to evaluate the impact of CRA on precise cardiac rehabilitation (CR) for CHD patients presenting with stable angina pectoris. The study cohort comprised patients with stable angina who were categorized into three groups: the CRA group (n = 35), the power bicycles (PB) group (n = 34), and the control group (n = 43).

View Article and Find Full Text PDF

Objectives: The actions and decisions of pilots are directly related to aviation safety. Therefore, understanding the neurological and cognitive processes of pilots during flight is essential. This study aims to investigate the EEG signals of pilots to understand the characteristic changes during the climb and descent stages of flight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!