A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Method of 3D Coating Accumulation Modeling Based on Inclined Spraying. | LitMetric

Method of 3D Coating Accumulation Modeling Based on Inclined Spraying.

Sensors (Basel)

College of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.

Published: February 2024

In the process of repairing the surface of products in aviation, aerospace, and other fields by spraying, accurate 3D cumulative-coating modeling is an important research issue in spraying-process simulation. The approach to this issue is a 3D cumulative-coating model based on inclined spraying. Firstly, an oblique spraying layer cumulative model was established, which could quickly collect the coating thickness distribution data of different spray distances. Secondly, 3D cumulative-coating modeling was conducted with the distance between the measuring point and the axis of the spray gun and the spraying distance between the measuring points as the input parameters, and the coating thickness of the measuring point as the output parameter. The experimental results show that the mean relative error of the cumulative model of the oblique spraying layer is less than 4.1% in the case of a 170~290 mm spraying distance and that the model is applicable in the range of -80~80 mm, indicating that the data on the oblique spraying coating proposed in this paper is accurate and fast. The accuracy of the 3D cumulative-coating model proposed in this paper is 1.2% and 21.5% higher than that of the two similar models, respectively. Therefore, the approach of 3D cumulative-coating modeling based on inclined distance spraying is discovered, demonstrating the advantages of fast and accurate modeling and enabling accurate 3D cumulative-coating modeling for spraying process simulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10893234PMC
http://dx.doi.org/10.3390/s24041212DOI Listing

Publication Analysis

Top Keywords

cumulative-coating modeling
16
based inclined
12
oblique spraying
12
spraying
10
modeling based
8
inclined spraying
8
spraying process
8
accurate cumulative-coating
8
cumulative-coating model
8
spraying layer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!