Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the process of repairing the surface of products in aviation, aerospace, and other fields by spraying, accurate 3D cumulative-coating modeling is an important research issue in spraying-process simulation. The approach to this issue is a 3D cumulative-coating model based on inclined spraying. Firstly, an oblique spraying layer cumulative model was established, which could quickly collect the coating thickness distribution data of different spray distances. Secondly, 3D cumulative-coating modeling was conducted with the distance between the measuring point and the axis of the spray gun and the spraying distance between the measuring points as the input parameters, and the coating thickness of the measuring point as the output parameter. The experimental results show that the mean relative error of the cumulative model of the oblique spraying layer is less than 4.1% in the case of a 170~290 mm spraying distance and that the model is applicable in the range of -80~80 mm, indicating that the data on the oblique spraying coating proposed in this paper is accurate and fast. The accuracy of the 3D cumulative-coating model proposed in this paper is 1.2% and 21.5% higher than that of the two similar models, respectively. Therefore, the approach of 3D cumulative-coating modeling based on inclined distance spraying is discovered, demonstrating the advantages of fast and accurate modeling and enabling accurate 3D cumulative-coating modeling for spraying process simulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10893234 | PMC |
http://dx.doi.org/10.3390/s24041212 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!