Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Salient Object Detection (SOD) in RGB-D images plays a crucial role in the field of computer vision, with its central aim being to identify and segment the most visually striking objects within a scene. However, optimizing the fusion of multi-modal and multi-scale features to enhance detection performance remains a challenge. To address this issue, we propose a network model based on semantic localization and multi-scale fusion (SLMSF-Net), specifically designed for RGB-D SOD. Firstly, we designed a Deep Attention Module (DAM), which extracts valuable depth feature information from both channel and spatial perspectives and efficiently merges it with RGB features. Subsequently, a Semantic Localization Module (SLM) is introduced to enhance the top-level modality fusion features, enabling the precise localization of salient objects. Finally, a Multi-Scale Fusion Module (MSF) is employed to perform inverse decoding on the modality fusion features, thus restoring the detailed information of the objects and generating high-precision saliency maps. Our approach has been validated across six RGB-D salient object detection datasets. The experimental results indicate an improvement of 0.20~1.80%, 0.09~1.46%, 0.19~1.05%, and 0.0002~0.0062, respectively in maxF, maxE, S, and MAE metrics, compared to the best competing methods (AFNet, DCMF, and C2DFNet).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10892948 | PMC |
http://dx.doi.org/10.3390/s24041117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!