Hand-gripping training is important for improving the fundamental functions of human physical activity. Bernstein's idea of "repetition without repetition" suggests that motor control function should be trained under changing states. The randomness level of load should be visualized for self-administered screening when repeating various training tasks under changing states. This study aims to develop a sensing methodology of random loads applied to both the agonist and antagonist skeletal muscles when performing physical tasks. We assumed that the time-variability and periodicity of the applied load appear in the time-series feature of muscle deformation data. In the experiment, 14 participants conducted the gripping tasks with a gripper, ball, balloon, Palm clenching, and paper. Crumpling pieces of paper (paper exercise) involves randomness because the resistance force of the paper changes depending on the shape and layers of the paper. Optical myography during gripping tasks was measured, and time-series features were analyzed. As a result, our system could detect the random movement of muscles during training.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10893447PMC
http://dx.doi.org/10.3390/s24041108DOI Listing

Publication Analysis

Top Keywords

sensing methodology
8
random loads
8
hand-gripping training
8
changing states
8
gripping tasks
8
paper
5
optical myography-based
4
myography-based sensing
4
methodology application
4
application random
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!