The Influenza A Virus Replication Cycle: A Comprehensive Review.

Viruses

The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK.

Published: February 2024

Influenza A virus (IAV) is the primary causative agent of influenza, colloquially called the flu. Each year, it infects up to a billion people, resulting in hundreds of thousands of human deaths, and causes devastating avian outbreaks with worldwide losses worth billions of dollars. Always present is the possibility that a highly pathogenic novel subtype capable of direct human-to-human transmission will spill over into humans, causing a pandemic as devastating if not more so than the 1918 influenza pandemic. While antiviral drugs for influenza do exist, they target very few aspects of IAV replication and risk becoming obsolete due to antiviral resistance. Antivirals targeting other areas of IAV replication are needed to overcome this resistance and combat the yearly epidemics, which exact a serious toll worldwide. This review aims to summarise the key steps in the IAV replication cycle, along with highlighting areas of research that need more focus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10892522PMC
http://dx.doi.org/10.3390/v16020316DOI Listing

Publication Analysis

Top Keywords

iav replication
12
influenza virus
8
replication cycle
8
influenza
5
replication
4
virus replication
4
cycle comprehensive
4
comprehensive review
4
review influenza
4
iav
4

Similar Publications

Influenza A virus (IAV) is a respiratory pathogen with a segmented negative-sense RNA genome that can cause epidemics and pandemics. The host factors required for the complete IAV infectious cycle have not been fully identified. Here, we examined three host factors for their contributions to IAV infectivity.

View Article and Find Full Text PDF

Fluorofurimazine, a novel NanoLuc substrate, enhances real-time tracking of influenza A virus infection without altering pathogenicity in mice.

Microbiol Spectr

January 2025

Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.

Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.

View Article and Find Full Text PDF

Background: Qi pi pill (QPP), which contains Renshen, Baizhu, Fuling, Gancao, Chenpi, Shanyao, Lianzi, Shanzha, Liushenqu, Maiya, and Zexie, was recommended for preventing and treating COVID-19 in Shandong Province (China). However, the mechanism by which QPP treats infectious diseases remains unclear. This study aims to investigate the therapeutic effect of QPP in vitro and on acute influenza infection in mice, exploring its mechanism of action against influenza A virus (IAV).

View Article and Find Full Text PDF

Advances and Challenges in Antiviral Development for Respiratory Viruses.

Pathogens

December 2024

Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico.

Article Synopsis
  • The article discusses the significant progress in developing antivirals for respiratory viruses like Influenzavirus, RSV, and SARS-CoV-2, focusing on strategies that target various stages of viral replication.
  • It highlights innovative methods such as targeting host proteins to combat viral resistance and using bioinformatics to identify potential antiviral candidates.
  • The review emphasizes the importance of integrating both traditional and cutting-edge technologies, like nanomedicine and CRISPR, to enhance treatment options while addressing challenges like viral evolution and accessibility for at-risk populations.
View Article and Find Full Text PDF

Proteomic Analysis of Differentially Expressed Proteins in A549 Cells Infected with H9N2 Avian Influenza Virus.

Int J Mol Sci

January 2025

Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Influenza A viruses (IAVs) are highly contagious pathogens that cause zoonotic disease with limited availability of antiviral therapies, presenting ongoing challenges to both public health and the livestock industry. Unveiling host proteins that are crucial to the IAV life cycle can help clarify mechanisms of viral replication and identify potential targets for developing alternative host-directed therapies. Using a four-dimensional (4D), label-free methodology coupled with bioinformatics analysis, we analyzed the expression patterns of cellular proteins that changed following H9N2 virus infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!