Optimizing the Multimerization Properties of Quinoline-Based Allosteric HIV-1 Integrase Inhibitors.

Viruses

Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA.

Published: January 2024

Allosteric HIV-1 Integrase (IN) Inhibitors or ALLINIs bind at the dimer interface of the IN, away from the enzymatic catalytic site, and disable viral replication by inducing over-multimerization of IN. Interestingly, these inhibitors are capable of impacting both the early and late stages of viral replication. To better understand the important binding features of multi-substituted quinoline-based ALLINIs, we have surveyed published studies on IN multimerization and antiviral properties of various substituted quinolines at the 4, 6, 7, and 8 positions. Here we show how the efficacy of these inhibitors can be modulated by the nature of the substitutions at those positions. These features not only improve the overall antiviral potencies of these compounds but also significantly shift the selectivity toward the viral maturation stage. Thus, to fully maximize the potency of ALLINIs, the interactions between the inhibitor and multiple IN subunits need to be simultaneously optimized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10892445PMC
http://dx.doi.org/10.3390/v16020200DOI Listing

Publication Analysis

Top Keywords

allosteric hiv-1
8
hiv-1 integrase
8
integrase inhibitors
8
viral replication
8
optimizing multimerization
4
multimerization properties
4
properties quinoline-based
4
quinoline-based allosteric
4
inhibitors
4
inhibitors allosteric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!