Mechanism of Viral DNA Packaging in Phage T4 Using Single-Molecule Fluorescence Approaches.

Viruses

Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA.

Published: January 2024

In all tailed phages, the packaging of the double-stranded genome into the head by a terminase motor complex is an essential step in virion formation. Despite extensive research, there are still major gaps in the understanding of this highly dynamic process and the mechanisms responsible for DNA translocation. Over the last fifteen years, single-molecule fluorescence technologies have been applied to study viral nucleic acid packaging using the robust and flexible T4 in vitro packaging system in conjunction with genetic, biochemical, and structural analyses. In this review, we discuss the novel findings from these studies, including that the T4 genome was determined to be packaged as an elongated loop via the colocalization of dye-labeled DNA termini above the portal structure. Packaging efficiency of the TerL motor was shown to be inherently linked to substrate structure, with packaging stalling at DNA branches. The latter led to the design of multiple experiments whose results all support a proposed torsional compression translocation model to explain substrate packaging. Evidence of substrate compression was derived from FRET and/or smFRET measurements of stalled versus resolvase released dye-labeled Y-DNAs and other dye-labeled substrates relative to motor components. Additionally, active in vivo T4 TerS fluorescent fusion proteins facilitated the application of advanced super-resolution optical microscopy toward the visualization of the initiation of packaging. The formation of twin TerS ring complexes, each expected to be ~15 nm in diameter, supports a double protein ring-DNA synapsis model for the control of packaging initiation, a model that may help explain the variety of ring structures reported among site phages. The examination of the dynamics of the T4 packaging motor at the single-molecule level in these studies demonstrates the value of state-of-the-art fluorescent tools for future studies of complex viral replication mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10893049PMC
http://dx.doi.org/10.3390/v16020192DOI Listing

Publication Analysis

Top Keywords

packaging
10
single-molecule fluorescence
8
structure packaging
8
mechanism viral
4
dna
4
viral dna
4
dna packaging
4
packaging phage
4
phage single-molecule
4
fluorescence approaches
4

Similar Publications

Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Purpose: The first 1000 days of life are critical for long-term health outcomes, and there is increasing concern about the suitability of commercial food products for infants, toddlers, and children. This study evaluates the compliance of UK commercial baby food products with WHO Nutrient and Promotion Profile Model (NPPM) guidelines.

Methods: Between February and April 2023, data on 469 baby food products marketed for infants and children under 36 months were collected from the online platforms of four major UK supermarkets.

View Article and Find Full Text PDF

Dietary Salt-Related Knowledge, Attitudes, and Behaviors of New Zealand Adults Aged 18-65 Years.

J Nutr Educ Behav

January 2025

Department of Epidemiology and Biostatistics, School of Population Health, The University of Auckland, Auckland, New Zealand; Centre for Translational Health Research: Informing Policy and Practice, School of Population Health, The University of Auckland, Auckland, New Zealand.

Objective: To explore dietary salt-related knowledge, attitudes, and behaviors of New Zealand (NZ) adults aged 18-65 years and assess differences by demographic subgroups.

Design: Cross-sectional online survey conducted between June 1, 2018 and August 31, 2018.

Setting: Participants were recruited in shopping malls, via social media, and a market research panel.

View Article and Find Full Text PDF

Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!