This study provides insight into the causes of inferior long-term stability of nanocomposites based on organic layered silicates (OLSs) used for cable mantles. A hierarchy was established by analyzing bentonite products and their respective polyolefin nanocomposites. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), gas adsorption, energy-dispersive spectroscopy (SEM-EDX), and infrared spectroscopy (IR) provided evidence for the adsorption of stabilizers onto the filler surface and thus their reduction in activity, promoting polymer oxidation. This behavior corresponds to the specific surface area of the incorporated OLS. Therefore, it can be stated that gas adsorption and XRD are especially useful for the evaluation of long-term photostability. It was revealed that photocatalytically active iron is of secondary importance since iron-rich bentonites still formed the most stable nanocomposite. This also applies to the Hofmann elimination products of the modifying agent, where higher contents do not accelerate the degradation process. No elimination products could be traced within the composites. Due to the polymer-filler interface being essential for long-term photostability, prior analysis of the filler surface properties can be used to estimate the stability of the respective nanocomposite as a rationale for product selection in the early stages of development. The reasons identified in this work for decreasing the long-term photostability of OLS nanocomposites compared with unfilled formulations is an important step toward increasing their stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10893414 | PMC |
http://dx.doi.org/10.3390/polym16040535 | DOI Listing |
Nat Methods
January 2025
Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
Organic dyes play a crucial role in live-cell imaging because of their advantageous properties, such as photostability and high brightness. Here we introduce a super-photostable and bright organic dye, Phoenix Fluor 555 (PF555), which exhibits an order-of-magnitude longer photobleaching lifetime than conventional organic dyes without the requirement of any anti-photobleaching additives. PF555 is an asymmetric cyanine structure in which, on one side, the indole in the conventional Cyanine-3 is substituted with 3-oxo-quinoline.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 PR China. Electronic address:
Red light emitting perovskite quantum dot (PQD) glass, with narrow-band emission and excellent stability, holds great potential for applications in liquid crystal displays. However, its low photoluminescence quantum yield (PLQY) remains the biggest obstacle limiting its practical application. Additionally, the mechanism behind the enhancement of the PLQY is not well understood, which restricts the further improvement of the PLQY in red light emitting PQD glass.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
In recent years, perovskite solar cells (PSCs) have garnered considerable attention as a prime candidate for next-generation photovoltaic technology. Ensuring the structural stability of perovskites is crucial to the operational reliability of these devices. However, the nonphotoactive yellow phase (δ-FAPbI) of formamidine (FA)-based perovskites is more favorable in thermodynamics, making it challenging to achieve pure α phase in crystallization.
View Article and Find Full Text PDFChemistry
December 2024
State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830054, China.
Small molecules with an acceptor-donor-acceptor (A-D-A) structure, featuring a fused-ring core as the donor and two electron-withdrawing end groups as acceptor units, represent a potential option for NIR-II fluorophores, benefiting from their narrow bandgaps, superior light-harvesting capabilities, and exceptional photostabilities. However, their planar conformations predispose them to forming H-aggregates during self-assembly, leading to significantly reduced fluorescence quantum yield (QY) of the resulting nanofluorophores. Herein, we report a small molecule, PF8CN, with a terminal unit-A-D-A-terminal unit structure.
View Article and Find Full Text PDFFront Med Technol
November 2024
Department of Biochemical Engineering, School of Chemical Engineering, Harcourt Butler Technical University, Kanpur, India.
Carbon quantum dots (CQDs) have shown considerable interest in multiple fields including bioimaging, biosensing, photocatalysis, ion sensing, heavy metal detection, and therapy due to highly tunable photoluminescence and good photostability. Apart from having optical properties CQDs offer several advantages such as low toxicity, environmental friendliness, affordability, and simple synthesis methods. Furthermore, by modifying their surface and functionality, it's possible to precisely control their physical and chemical characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!