The advanced Gas Insulated Switchgear/Gas Insulated Lines (GIS/GIL) transmission equipment serves as an essential physical infrastructure for establishing a new energy power system. An analysis spanning nearly a decade on faults arising from extra/ultra-high voltage discharges reveals that over 60% of such faults are attributed to the discharge of metal particles and dust. While existing technical means, such as ultra-high frequency and ultrasonic sensing, exhibit effectiveness in online monitoring of particles larger than sub-millimeter dimensions, the inherent randomness and elusive nature of micron-nano dust pose challenges for effective characterization through current technology. This elusive micron-nano dust, likely concealed as a latent threat, necessitates special attention due to its potential as a "safety killer". To address the challenges associated with detecting micron-nano dust and comprehending its intricate mechanisms, this paper introduces a micron-nano dust adsorption experimental platform tailored for observation and practical application in GIS/GIL operations. The findings highlight that micron-nano dust's adsorption state in the electric field predominantly involves agglomerative adsorption along the insulator surface and diffusive adsorption along the direction of the ground electrode. The pivotal factors influencing dust movement include the micron-nano dust's initial position, mass, material composition, and applied voltage. Further elucidation emphasizes the potential of micron-nano dust as a concealed safety hazard. The study reveals specific physical phenomena during the adsorption process. Agglomerative adsorption results in micron-nano dust speckles forming on the epoxy resin insulator's surface. With increasing voltage, these speckles undergo an "explosion", forming an annular dust halo with deepening contours. This phenomenon, distinct from the initial adsorption, is considered a contributing factor to flashovers along the insulator's surface. The physical mechanism behind flashovers triggered by micron-nano dust is uncovered, highlighting the formation of a localized short circuit area and intense electric field distortion constituted by dust speckles. These findings establish a theoretical foundation and technical support for enhancing the safe operational performance of AC and DC transmission pipelines' insulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10892215 | PMC |
http://dx.doi.org/10.3390/polym16040485 | DOI Listing |
Polymers (Basel)
February 2024
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.
The advanced Gas Insulated Switchgear/Gas Insulated Lines (GIS/GIL) transmission equipment serves as an essential physical infrastructure for establishing a new energy power system. An analysis spanning nearly a decade on faults arising from extra/ultra-high voltage discharges reveals that over 60% of such faults are attributed to the discharge of metal particles and dust. While existing technical means, such as ultra-high frequency and ultrasonic sensing, exhibit effectiveness in online monitoring of particles larger than sub-millimeter dimensions, the inherent randomness and elusive nature of micron-nano dust pose challenges for effective characterization through current technology.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2023
The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China.
Photocatalytic coatings can degrade volatile organic compounds into non-toxic products, which has drawn the attention of scholars around the world. However, the pollution of dust on the coating adversely affects the photocatalytic efficiency and service life of the coating. Here, a series of TiO-polyfluoroalkoxy (PFA) coatings with different contents of PFA were fabricated by suspension plasma spraying technology.
View Article and Find Full Text PDFJ Hazard Mater
July 2021
Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15090, USA.
Chemical and physical properties of coal dust particles significantly influence the inhalation of respirable coal dust by miners, causing several lung diseases such as coal workers' pneumoconiosis (CWP) and silicosis. Multiple experimental techniques, including proximate/ultimate analyses, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), laser diffraction, and low-pressure CO and N adsorption, were used to investigate the chemical and physical properties of micron-/nano-coal particles comprehensively. Compared to the micron-scale coal dust, the nano-coal dust (prepared by cryogenic ballmill) shows the increase of carbon content and aromaticity and a decrease of oxygen content along with the reduction of oxygen-containing functional groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!