Carotenoids, biotechnologically significant pigments, play crucial biological roles in marine microorganisms. While various environments have been explored to understand the diversity of carotenoids and their biosynthesis, the Antarctic Ocean remains relatively under-investigated. This study conducted a metagenomic analysis of seawater from two depths (16 and 25 m) near the King Sejong Station in the Antarctic Ocean. The analysis revealed a rich genetic diversity underlying C40 (astaxanthin, myxol, okenone, spheroidene, and spirilloxanthin), C30 (diaponeurosporene, diapolycopene, and staphyloxanthin), and C50 (C.p. 450) carotenoid biosynthesis in marine microorganisms, with notable differential gene abundances between depth locations. Exploring carotenoid pathway genes offers the potential for discovering diverse carotenoid structures of biotechnological value and better understanding their roles in individual microorganisms and broader ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10892129 | PMC |
http://dx.doi.org/10.3390/microorganisms12020390 | DOI Listing |
J Phycol
January 2025
Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon, USA.
Sea ice can profoundly influence photosynthetic organisms by altering subsurface irradiance, but it is susceptible to changes in the climate. The patterns and timing of sea ice cover can vary on a monthly to annual timescale in small sub-regions of the Western Antarctic Peninsula (WAP). During the latter part of the 20th century, sea ice coverage significantly decreased in the WAP, a trend that aligns with warming in this area.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel.
Cyanobacterial distributions are shaped by abiotic factors including temperature, light and nutrient availability as well as biotic factors such as grazing and viral infection. In this study, we investigated the abundances of T4-like and T7-like cyanophages and the extent of picocyanobacterial infection in the cold, high-nutrient-low-chlorophyll, sub-Antarctic waters of the southwest Pacific Ocean during austral spring. Synechococcus was the dominant picocyanobacterium, ranging from 4.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea.
Antarctic organisms are known for producing unique secondary metabolites, and this study specifically focuses on the less-explored metabolites of the moss Warnstorfia fontinaliopsis. To evaluate their potential bioactivity, we extracted secondary metabolites using four different solvents and identified significant lipase inhibitory activity in the methanol extract. Non-targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on this extract predicted the presence of 12 compounds, including several not previously reported in mosses.
View Article and Find Full Text PDFSci Rep
January 2025
Vale Institute of Technology, Sustainable Development, Belém, Pará, Brazil.
Ecosystem services provided by terrestrial biomes, such as moisture recycling and carbon assimilation, are crucial components of the water, energy, and biogeochemical cycles. These biophysical processes are influenced by climate variability driven by distant ocean-atmosphere interactions, commonly referred to as teleconnections. This study aims to identify which teleconnections most significantly affect key biophysical processes in South America's two largest biomes: The Amazon and Cerrado.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
University of West Florida, 11000 University Parkway, Pensacola, FL 32514, United States of America. Electronic address:
Microplastics, small pieces of plastic measuring less than five millimeters, have spread to all ecosystems, even those in the Southern Ocean around Antarctica. In particular, microplastics have been found contaminating water in emerging fjords, or inlets created by deglaciation, along the Antarctic Peninsula. Microplastics contamination puts fjord communities, which are unique and dominated by benthic species, at high risk for microplastic exposure leading to issues with feeding, endocrine disruption, and exposure to adsorbed toxins, all of which lower fecundity and survivability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!