Phototherapies, such as photothermal therapy (PTT) and photodynamic therapy (PDT), combined with novel all-in-one light-responsive nanocomposites have recently emerged as new therapeutic modalities for the treatment of cancer. Herein, we developed novel all-in-one triphenylphosphonium-functionalized gold nanorod/zinc oxide core-shell nanocomposites (CTPP-GNR@ZnO) for mitochondrial-targeted PTT/PDT owing to their good biocompatibility, tunable and high optical absorption, photothermal conversion efficiency, highest reactive oxygen species (ROS) generation, and high mitochondrial-targeting capability. Under laser irradiation of 780 nm, the CTPP-GNR@ZnO core-shell nanocomposites effectively produced heat in addition to generating ROS to induce cell death, implying a synergistic effect of mild PTT and PDT in combating cancer. Notably, the in vitro PTT/PDT effect of CTPP-GNR@ZnO core-shell nanocomposites exhibited effective cell ablation (95%) and induced significant intracellular ROS after the 780 nm laser irradiation for 50 min, indicating that CTPP in CTPP-GNR@ZnO core-shell nanocomposites can specifically target the mitochondria of CT-26 cells, as well as generate heat and ROS to completely kill cancer cells. Overall, this light-responsive nanocomposite-based phototherapy provides a new approach for cancer synergistic therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10893051 | PMC |
http://dx.doi.org/10.3390/pharmaceutics16020284 | DOI Listing |
Materials (Basel)
November 2024
Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania.
Iron oxide nanoparticles were synthesized using a vortex microfluidic system and subsequently functionalized with a primary shell of salicylic acid, recognized for its ability to increase the stability and biocompatibility of coated materials. In the second stage, the vortex platform was placed in a magnetic field to facilitate the growth and development of a porous silica shell. The selected drug for this study was micafungin, an antifungal agent well regarded for its effectiveness in combating fungal infections and identified as a priority compound by the World Health Organization (WHO).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia.
Transition metal dichalcogenides (TMDCs), particularly molybdenum disulfide (MoS), have gained significant attention in the field of optoelectronics and photonics due to their unique electronic and optical properties. The integration of TMDCs with plasmonic materials allows to tailor the optical response and offers significant advantages for photonic applications. This study presents a novel approach to synthesize MoS-Au nanocomposites utilizing femtosecond laser ablation in liquid to achieve tunable optical properties in the near-infrared (NIR) region.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Chemistry, Dongguk University-Seoul Campus, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea.
The core@shell nanostars composed of star-like Au nanocores with TiO shells (Au@TiO NSs) are synthesized in a one-pot reaction without any reducing or surface-controlling agents. The Au@TiO NSs exhibit strong absorption in the UV region based on the interaction between the Au nanocore and the TiO shell, and this optochemical property leads to the efficient laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) analysis of small molecules with low background interference and high reproducible mass signals compared with spherical Au nanoparticles (NPs). The limit of detection and dynamic range values of various analytes also improved with Au@TiO NSs compared with those obtained with spherical Au NPs.
View Article and Find Full Text PDFBiomed Mater
December 2024
Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Simulating the natural cellular environment using magnetic stimuli could be a potential strategy to promote bone tissue regeneration. This study unveiled a novel 3D printed composite scaffold containing polycaprolactone (PCL) and cobalt ferrite/forsterite core-shell nanoparticles (CFF-NPs) to investigate physical, mechanical and biological properties of magnetoactive scaffold under static magnetic field. For this purpose, core-shell structure is synthesized through a two-step synthesis strategy in which cobalt ferrite nanoparticles are prepared via sol-gel combustion method and then are coated through sol-gel method with forsterite.
View Article and Find Full Text PDFThe application of upconversion nanomaterials relies heavily on the ability to produce bright upconversion luminescence (UCL) or high upconversion quantum yields (UCQYs) at low power density excitation. Herein, we synthesized silica-coated NaYF:Yb@NaGdF:Tm@NaYF:Tb upconversion nanoparticles (UCNPs) and CsPbI perovskites quantum dots (PeQDs) nanocomposites by the slow hydrolysis of (3-aminopropyl)triethoxysilane. The energy transfer (ET) of Gd→Tb accelerates the five-photon upconversion process of Yb-Tm and the design of the core@shell@shell layer effectively mitigates the energy jumps between Gd ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!