This study focuses on the Medical Isotope Production Reactor (MIPR), an aqueous homogeneous reactor utilized for synthesizing medical isotopes like Mo. A pivotal aspect of MIPR's functionality involves the fuel solution's complex chemical interactions, particularly during reactor operation. These interactions result in the formation of precipitates, notably studtite and columnar uranium ore, which can impact reactor performance. The research presented here delves into the reactions between liquid fuel uranyl nitrate and key radiolytic products, employing simulation calculations complemented by experimental validation. This approach facilitates the identification of uranium precipitate types and their formation conditions under operational reactor settings. Additionally, the article explores strategies to mitigate the formation of specific uranium precipitates, thereby contributing to the efficient and stable operation of MIPR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10889983PMC
http://dx.doi.org/10.3390/ma17040945DOI Listing

Publication Analysis

Top Keywords

formation conditions
8
uranium precipitates
8
medical isotope
8
isotope production
8
reactor
5
formation
4
conditions preventive
4
preventive measures
4
uranium
4
measures uranium
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Columbia University, New York, NY, USA.

Background: Focused ultrasound (FUS)-induced blood-brain barrier opening (BBBO) is a technique for safely, non-invasively, and transiently opening the blood brain barrier in a targeted area of the brain. Pre-clinical and clinical studies have shown that FUS is capable of decreasing amyloid plaque load and stimulating neurogenesis in Alzheimer's Disease (AD) models, in addition to being safe for use in human patients. However, the effect of FUS-BBBO on neurons has not yet been characterized, despite its crucial role in cognition and regulating brain function.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia, Melbourne, VIC, Australia.

Background: Iron is vital for metabolism but can act as a catalyst for oxidative damage. Elevated brain iron, determined from biomarkers of iron (CSF ferritin and quantitative susceptibility mapping MRI) and from post-mortem measurement of brain iron, has been associated with accelerated cognitive decline in multiple Alzheimer's disease (AD) clinical, cohorts. These findings supported the hypothesis that treatment with the brain-permeable iron chelator deferiprone may be associated clinical benefit in AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.

Background: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the impairment of cognitive development and disruption of neurocognitive function. This neuropathological condition is marked by neurodegeneration, loss of neural tissue, and the formation of neurofibrillary tangles and Aβ plaques. Various studies reported the utilization of phytoconstituents like fisetin, quercetin, berberine, and xanthohumol for the treatment of AD.

View Article and Find Full Text PDF

Background: There are no cures for Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by elevation of beta-amyloid and tau proteins besides neuronal death and causing cognitive impairment. Phosphodiesterase 5 (PDE5) is a cyclic guanosine monophosphate-degrading enzyme involved in numerous biological pathways including those relevant to memory formation. PDE5 inhibition offers the potential to attenuate AD progression by acting at the downstream level of beta-amyloid and tau elevation.

View Article and Find Full Text PDF

Background: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!