Microstructures and Corrosion Properties of Wire Arc Additive Manufactured Copper-Nickel Alloys.

Materials (Basel)

Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061, USA.

Published: February 2024

The 70/30 copper-nickel alloy is used mainly in critical parts with more demanding conditions in marine settings. There is a need for innovative methods that offer fast production and cost-effectiveness in order to supplement current copper-nickel alloy manufacturing processes. In this study, we employ wire arc additive manufacturing (WAAM) to fabricate the 70/30 copper-nickel alloy. The as-built microstructure is characterized by columnar grains with prominent dendrites and chemical segregation in the inter-dendritic area. The aspect ratio of the columnar grain increases with increasing travel speed (TS) at the same wire feed speed (WFS). This is in contrast with the equiaxed grain structure, with a more random orientation, of the conventional sample. The sample built with a WFS of 8 m/min, TS of 1000 mm/min, and a track distance of 3.85 mm exhibits superior corrosion properties in the 3.5 wt% NaCl solution when compared with the conventional sample, as evidenced by a higher film resistance and breakdown potential, along with a lower passive current density of the WAAM sample. The corrosion morphology reveals the critical roles played by the nickel element that is unevenly distributed between the dendrite core and inter-dendritic area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890330PMC
http://dx.doi.org/10.3390/ma17040876DOI Listing

Publication Analysis

Top Keywords

copper-nickel alloy
12
corrosion properties
8
wire arc
8
arc additive
8
70/30 copper-nickel
8
inter-dendritic area
8
conventional sample
8
microstructures corrosion
4
properties wire
4
additive manufactured
4

Similar Publications

Sulfate reducing bacteria corrosion of a 90/10 Cu-Ni alloy coupled to an Al sacrificial anode.

Bioelectrochemistry

December 2024

Marine Corrosion and Protection Team, School of Chemical Engineering and Technology (Zhuhai 519082), Sun Yat-sen University, China. Electronic address:

This study investigates the corrosion of 90/10 copper-nickel (Cu-Ni) alloy caused by sulfate-reducing bacteria (SRB) in the presence of aluminum anodes, with particular emphasis on the role of electron supply in microbial corrosion and the resulting local corrosion failures. The study reveals that the electron supply from the anode supports SRB growth on the Cu-Ni alloy through an "Electrons-siphoning" mechanism. However, the supply is insufficient to sustain the SRB population, resulting in ineffective cathodic protection (i = 2.

View Article and Find Full Text PDF

Norovirus, primarily transmitted via fomite route, poses a significant threat to global public health and the economy. Airports, as critical transportation hubs connecting people from around the world, has high potential risk of norovirus transmission due to large number of public surfaces. A total of 21.

View Article and Find Full Text PDF

Elucidating different microbiologically influenced corrosion behavior of copper, 90/10 Cu-Ni alloy, 70/30 Cu-Ni alloy and nickel from the perspective of element content.

Bioelectrochemistry

April 2025

School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; Qingdao Key Laboratory of Marine Extreme Environmental Materials, Qingdao 266100, China. Electronic address:

This research examined the varying susceptibility of pure copper (Cu), 90/10 copper-nickel (Cu-Ni) alloy, 70/30 Cu-Ni alloy, and pure nickel (Ni) to microbiologically influenced corrosion (MIC) induced by Desulfovibrio vulgaris, with a focus on the elemental composition of the materials. The results revealed a progressive shift in MIC behavior across these metals and alloys, with increased corrosion severity observed as Ni content decreased. Element Ni improved the corrosion resistance of the alloy while also preventing the growth of microorganisms.

View Article and Find Full Text PDF

The rational design of highly active and durable non-noble electrocatalysts for hydrogen evolution reaction (HER) is significantly important but technically challenging. Herein, a phosphor and cobalt dual doped copper-nickel alloy (P, Co-CuNi) electrocatalyst with high-efficient HER performance is prepared by one-step electrodeposition method and reported for the first time. As a result, P, Co-CuNi only requires an ultralow overpotential of 56 mV to drive the current density of 10 mA cm, with remarkable stability for over 360 h, surpassing most previously reported transition metal-based materials.

View Article and Find Full Text PDF

In this paper, the relationship between the pitting corrosion formation of B30 copper-nickel (CuNi) alloy and the metabolism of sulfate-reducing bacteria (SRB) was investigated. Combined with the influence of temperature during the actual operation of the cooling systems, the evolution law of the alloy passivation film was analyzed, and the mechanism of SRB promoting the accelerated development of B30 CuNi alloy pitting corrosion was revealed. The results show that SRB significantly promoted the pitting formation and development of B30 CuNi alloy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!