This study outlines the fabrication process of an electrochemical platform utilizing glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and palladium nanoparticles (PdNPs). The MWCNTs were applied on the GCE surface using the drop-casting method and PdNPs were produced electrochemically by a potentiostatic method employing various programmed charges from an ammonium tetrachloropalladate(II) solution. The resulting GCEs modified with MWCNTs and PdNPs underwent comprehensive characterization for topographical and morphological attributes, utilizing atomic force microscopy and scanning electron microscopy along with energy-dispersive X-ray spectrometry. Electrochemical assessment of the GCE/MWCNTs/PdNPs involved cyclic voltammetry (CV) and electrochemical impedance spectroscopy conducted in perchloric acid solution. The findings revealed even dispersion of PdNPs, and depending on the electrodeposition parameters, PdNPs were produced within four size ranges, i.e., 10-30 nm, 20-40 nm, 50-60 nm, and 70-90 nm. Additionally, the electrocatalytic activity toward formaldehyde oxidation was assessed through CV. It was observed that an increase in the size of the PdNPs corresponded to enhanced catalytic activity in the formaldehyde oxidation reaction on the GCE/MWCNTs/PdNPs. Furthermore, satisfactory long-term stability over a period of 42 days was noticed for the GCE/MWCNTs/PDNPs(100) material which demonstrated the best electrocatalytic properties in the electrooxidation reaction of formaldehyde.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890270 | PMC |
http://dx.doi.org/10.3390/ma17040841 | DOI Listing |
Sensors (Basel)
December 2024
Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS), Université de Toulouse, CNRS, UPS, 7 Avenue du Colonel Roche, 31031 Toulouse, France.
The need for odor measurement and pollution source identification in various sectors (aeronautic, automobile, healthcare…) has increased in the last decade. Multisensor modules, such as electronic noses, seem to be a promising and inexpensive alternative to traditional sensors that were only sensitive to one gas at a time. However, the selectivity, the non-repetitiveness of their manufacture, and their drift remain major obstacles to the use of electronic noses.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
College of Materials Science and Engineering, Beihua University, Jilin City 132013, China.
The efficient utilization of lignin, a pivotal component of lignocellulosic biomass, is crucial for advancing sustainable biorefinery processes. However, optimizing lignin valorization remains challenging due to its intricate structure and susceptibility to undesirable reactions during processing. In this study, we delve into the impact of various pretreatment agents on birch lignin, aiming to enhance its catalytic oxidation and depolymerization under polyoxometalates (POMs) catalysis.
View Article and Find Full Text PDFChemosphere
January 2025
Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China. Electronic address:
Photocatalytic oxidation is considered to be a highly promising technology for indoor formaldehyde (HCHO) abatement. However, powdered photocatalysts encounter practical challenges due to their recycling difficulties and propensity for aggregation. In this study, we developed a CuO/OVs-TiO photocatalyst dispersion using various physical and chemical methods, which could be stabilized for an extended period.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Electrochemical conversion of CO to hydrocarbons is a promising approach to carbon neutrality and energy storage. The formation of reaction intermediates involves crucial steps of proton transfer, making it essential to understand the role of protons in the electrochemical process to control the product selectivity and elucidate the underlying catalytic reaction mechanism of the CO electrochemical reduction (CORR). In this work, we proposed a strategy to regulate product selectivities by tuning local proton transport rates through a surface resin layer over cuprous oxides.
View Article and Find Full Text PDFEnviron Res
December 2024
Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea. Electronic address:
Titanium dioxide (TiO) is the most commonly used catalytic medium in the filter system of commercial photocatalytic air purifier (AP). The AP performance can be affected sensitively by the coating conditions of such medium on the filters and its physicochemical properties (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!