This study outlines the fabrication process of an electrochemical platform utilizing glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and palladium nanoparticles (PdNPs). The MWCNTs were applied on the GCE surface using the drop-casting method and PdNPs were produced electrochemically by a potentiostatic method employing various programmed charges from an ammonium tetrachloropalladate(II) solution. The resulting GCEs modified with MWCNTs and PdNPs underwent comprehensive characterization for topographical and morphological attributes, utilizing atomic force microscopy and scanning electron microscopy along with energy-dispersive X-ray spectrometry. Electrochemical assessment of the GCE/MWCNTs/PdNPs involved cyclic voltammetry (CV) and electrochemical impedance spectroscopy conducted in perchloric acid solution. The findings revealed even dispersion of PdNPs, and depending on the electrodeposition parameters, PdNPs were produced within four size ranges, i.e., 10-30 nm, 20-40 nm, 50-60 nm, and 70-90 nm. Additionally, the electrocatalytic activity toward formaldehyde oxidation was assessed through CV. It was observed that an increase in the size of the PdNPs corresponded to enhanced catalytic activity in the formaldehyde oxidation reaction on the GCE/MWCNTs/PdNPs. Furthermore, satisfactory long-term stability over a period of 42 days was noticed for the GCE/MWCNTs/PDNPs(100) material which demonstrated the best electrocatalytic properties in the electrooxidation reaction of formaldehyde.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890270PMC
http://dx.doi.org/10.3390/ma17040841DOI Listing

Publication Analysis

Top Keywords

formaldehyde oxidation
12
electrochemical platform
8
glassy carbon
8
modified multi-walled
8
multi-walled carbon
8
carbon nanotubes
8
palladium nanoparticles
8
pdnps produced
8
activity formaldehyde
8
pdnps
6

Similar Publications

Selective Detection of Formaldehyde and Nitrogen Dioxide Using Innovative Modeling of SnO Surface Response to Pulsed Temperature Profile.

Sensors (Basel)

December 2024

Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS), Université de Toulouse, CNRS, UPS, 7 Avenue du Colonel Roche, 31031 Toulouse, France.

The need for odor measurement and pollution source identification in various sectors (aeronautic, automobile, healthcare…) has increased in the last decade. Multisensor modules, such as electronic noses, seem to be a promising and inexpensive alternative to traditional sensors that were only sensitive to one gas at a time. However, the selectivity, the non-repetitiveness of their manufacture, and their drift remain major obstacles to the use of electronic noses.

View Article and Find Full Text PDF

The efficient utilization of lignin, a pivotal component of lignocellulosic biomass, is crucial for advancing sustainable biorefinery processes. However, optimizing lignin valorization remains challenging due to its intricate structure and susceptibility to undesirable reactions during processing. In this study, we delve into the impact of various pretreatment agents on birch lignin, aiming to enhance its catalytic oxidation and depolymerization under polyoxometalates (POMs) catalysis.

View Article and Find Full Text PDF

Enhancing visible light degradation of gaseous formaldehyde with CuO/OVs-TiO photocatalyst loaded wallpaper: Preparation, efficacy and mechanism.

Chemosphere

January 2025

Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China. Electronic address:

Photocatalytic oxidation is considered to be a highly promising technology for indoor formaldehyde (HCHO) abatement. However, powdered photocatalysts encounter practical challenges due to their recycling difficulties and propensity for aggregation. In this study, we developed a CuO/OVs-TiO photocatalyst dispersion using various physical and chemical methods, which could be stabilized for an extended period.

View Article and Find Full Text PDF

Proton-Transfer Dynamics Regulates CO Electroreduction Products via Hydrogen Coverage.

ACS Cent Sci

December 2024

Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Electrochemical conversion of CO to hydrocarbons is a promising approach to carbon neutrality and energy storage. The formation of reaction intermediates involves crucial steps of proton transfer, making it essential to understand the role of protons in the electrochemical process to control the product selectivity and elucidate the underlying catalytic reaction mechanism of the CO electrochemical reduction (CORR). In this work, we proposed a strategy to regulate product selectivities by tuning local proton transport rates through a surface resin layer over cuprous oxides.

View Article and Find Full Text PDF

The effects of filter coating approaches on photocatalytic abatement of formaldehyde in indoor environment using a TiO-based air purifier system.

Environ Res

December 2024

Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea. Electronic address:

Titanium dioxide (TiO) is the most commonly used catalytic medium in the filter system of commercial photocatalytic air purifier (AP). The AP performance can be affected sensitively by the coating conditions of such medium on the filters and its physicochemical properties (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!