Impedimetric biosensors represent a powerful and promising tool for studying and monitoring biological processes associated with proteins and can contribute to the development of new approaches in the diagnosis and treatment of diseases. The basic principles, analytical methods, and applications of hybrid impedimetric biosensors for express protein detection in biological fluids are described. The advantages of this type of biosensors, such as simplicity and speed of operation, sensitivity and selectivity of analysis, cost-effectiveness, and an ability to be integrated into hybrid microfluidic systems, are demonstrated. Current challenges and development prospects in this area are analyzed. They include (a) the selection of materials for electrodes and formation of nanostructures on their surface; (b) the development of efficient methods for biorecognition elements' deposition on the electrodes' surface, providing the specificity and sensitivity of biosensing; (c) the reducing of nonspecific binding and interference, which could affect specificity; (d) adapting biosensors to real samples and conditions of operation; (e) expanding the range of detected proteins; and, finally, (f) the development of biosensor integration into large microanalytical system technologies. This review could be useful for researchers working in the field of impedimetric biosensors for protein detection, as well as for those interested in the application of this type of biosensor in biomedical diagnostics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890403 | PMC |
http://dx.doi.org/10.3390/mi15020181 | DOI Listing |
Biosensors (Basel)
December 2024
Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
Lung cancer is the most common type of cancer diagnosed worldwide and is also among the most fatal. Early detection, before symptoms become evident, is fundamental for patients' survival. Therefore, several lung cancer biomarkers have been proposed to enable a prompt diagnosis, including neuron-specific enolase (NSE) and carcinoembryonic antigen (CEA).
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
The COVID-19 pandemic has prompted the need for the development of new biosensors for SARS-CoV-2 detection. Particularly, systems with qualities such as sensitivity, fast detection, appropriate to large-scale analysis, and applicable in situ, avoiding using specific materials or personnel to undergo the test, are highly desirable. In this regard, developing an electrochemical biosensor based on peptides derived from the angiotensin-converting enzyme receptor 2 (ACE2) is a possible answer.
View Article and Find Full Text PDFACS Sens
December 2024
Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
The high rate of cancer worldwide and the heavy costs imposed on governments and humanity have always motivated researchers to develop point-of-care (POC) biosensors for easy diagnosis and monitoring of cancer treatment. Herein, we report on a label-free impedimetric biosensor based on TiCT MXene and imprinted ortho-phenylenediamine (o-PD) for the detection of carcinoembryonic antigen (CEA), a biomarker for various cancers surveillance, especially colorectal cancer (CRC). Accordingly, MXene was drop-casted on the surface of a disposable silver electrode to increase the sensitivity and create high-energy nanoareas on the surface, which are usable for protein immobilization and detection.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Centre for Nano and Material Sciences, Jain global Campus, Jain (Deemed-to-be-University), Jakkasandra Post Ramanagaram Dist, 562112, India. Electronic address:
Cancer biomarkers are crucial indicators found in clinical samples, playing a key role in early detection, diagnosis, and treatment of cancer. Detecting these biomarkers with high sensitivity is essential for early diagnosis, especially in aggressive cancers like lung cancer, which is the leading cause of cancer-related deaths. Carcinoembryonic antigen (CEA) is a critical biomarker for lung cancer, and its detection aids in identifying the disease at an early stage.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Institute of Nanoscale and Biobased Materials, Faculty of Materials Science and Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany.
This research introduces a non-enzymatic electrochemical sensor utilizing flower-like nickel oxide/carbon (fl-NiO/C) microspheres for the precise detection of L-glutamic acid (LGA), a crucial neurotransmitter in the field of healthcare and a frequently utilized food additive and flavor enhancer. The fl-NiO/C were synthesized with controllable microstructures using metal-organic frameworks (MOFs) as precursors followed by a simple calcination process. The uniformly synthesized fl-NiO/C microspheres were further characterized using Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and field emission scanning electron microscopy (FE-SEM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!