Selenium- and/or Zinc-Enriched Egg Diet Improves Oxidative Damage and Regulates Gut Microbiota in D-Gal-Induced Aging Mice.

Nutrients

Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China.

Published: February 2024

Eggs, with their high nutritional value, are great carriers for enriching nutrients. In this study, selenium- and/or zinc-enriched eggs (SZE) were obtained and their effects on ameliorating oxidative stress injury, alleviating cognitive impairment, and maintaining intestinal flora balance in a D-gal-induced aging mice model were investigated. As determined by the Y-maze test, SZE restored the learning and memory abilities and increased the Ach level and AChE activity of aging mice ( < 0.05). Meanwhile, supplementation of low-dose SZE increased antioxidant levels and decreased inflammation levels ( < 0.05). High-dose SZE increased anti-inflammatory levels but were less effective than low dose. Additionally, SZE maintained the intestinal flora balance and significantly increased the ratio of and . , as a probiotic, was negatively correlated with pro-inflammatory factors and positively correlated with antioxidant levels ( < 0.05). These results suggest that SZE might improve organ damage and cognitive function by attenuating oxidative stress and inflammatory response and maintaining healthy gut flora.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10893158PMC
http://dx.doi.org/10.3390/nu16040512DOI Listing

Publication Analysis

Top Keywords

aging mice
12
selenium- and/or
8
and/or zinc-enriched
8
d-gal-induced aging
8
oxidative stress
8
intestinal flora
8
flora balance
8
sze increased
8
antioxidant levels
8
levels 005
8

Similar Publications

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

Bitter acids (BA) are main component of Humulus lupulus L. (hops). They are known for beer brewing and have various biological and pharmacological properties, especially the bone-protective effect confirmed by our previous in vivo study.

View Article and Find Full Text PDF

With the increasing incidence of non-hereditary Parkinson's disease (PD), research into the involvement of specific environmental factors, in addition to aging, has become more prominent. The effects of microplastic exposure on public health have gained increased attention as it is known to cause a range of neurotoxic changes, some of which are similar to the pathological features of PD. We carried out low-dose microplastic exposure experiments on mice and Caenorhabditis elegans models and implemented a survey regarding the utilization of plastic products in the population.

View Article and Find Full Text PDF

SIRT6 promotes angiogenesis by enhancing VEGFA secretion via demyristoylation in endothelial cell.

J Mol Cell Cardiol

January 2025

Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China. Electronic address:

Angiogenesis plays a pivotal role in ischemic cardiovascular disease, accompanied by epigenetic regulation during this process. Sirtuin 6 (SIRT6) has been implicated in the regulation of DNA repair, transcription and aging, with its deacetylase activity fully studied. However, the role of SIRT6 demyristoylase activity remains less clear, with even less attention given to its myristoylated substrates.

View Article and Find Full Text PDF

Chronic low-grade inflammation observed in older adults, termed inflammaging, is a common feature underlying a multitude of aging-associated maladies including a decline in hematopoietic activity. However, whether suppression of inflammaging can preserve hematopoietic health span remains unclear, in part because of a lack of tools to measure inflammaging within hematopoietic stem cells (HSCs). Here, we identify thrombospondin-1 (Thbs1) as an essential regulator of inflammaging within HSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!