This comprehensive exploration delves into the intricate interplay of methylglyoxal (MG) and glyoxalase 1 (GLO I) in various physiological and pathological contexts. The linchpin of the narrative revolves around the role of these small molecules in age-related issues, diabetes, obesity, cardiovascular diseases, and neurodegenerative disorders. Methylglyoxal, a reactive dicarbonyl metabolite, takes center stage, becoming a principal player in the development of AGEs and contributing to cell and tissue dysfunction. The dual facets of GLO I-activation and inhibition-unfold as potential therapeutic avenues. Activators, spanning synthetic drugs like candesartan to natural compounds like polyphenols and isothiocyanates, aim to restore GLO I function. These molecular enhancers showcase promising outcomes in conditions such as diabetic retinopathy, kidney disease, and beyond. On the contrary, GLO I inhibitors emerge as crucial players in cancer treatment, offering new possibilities in diseases associated with inflammation and multidrug resistance. The symphony of small molecules, from GLO I activators to inhibitors, presents a nuanced understanding of MG regulation. From natural compounds to synthetic drugs, each element contributes to a molecular orchestra, promising novel interventions and personalized approaches in the pursuit of health and wellbeing. The abstract concludes with an emphasis on the necessity of rigorous clinical trials to validate these findings and acknowledges the importance of individual variability in the complex landscape of health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890012 | PMC |
http://dx.doi.org/10.3390/life14020263 | DOI Listing |
Chem Asian J
January 2025
Mahatma Gandhi University, School of Chemical Sciences, Priyadarsini Hills, 686560, Kottayam, INDIA.
Enantiomeric separation of chiral molecules is pivotal for exploring fundamental questions about life's origin and many other fields. Crystallisation is an important platform for the separation of chiral molecules, elegantly applied to many systems, for instance, the formation of conglomerates, where the enantiomers crystallise as separate phases. Many approaches have been proposed to explore crystallisation-driven enantiomeric separation with fewer insights into the complex pathways associated with the separation processes.
View Article and Find Full Text PDFSmall Methods
January 2025
Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.
Molecularly Imprinted Polymers (MIPs) have gained prominence as synthetic receptors, combining simplicity of synthesis with robust molecular recognition akin to antibodies and enzymes. One of their main application areas is chemical sensing. However, direct integration of MIPs with nanostructured transducers, crucial for enhancing sensing capabilities and broadening MIPs sensing applications, remains limited.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.
The transient receptor potential (TRP) channel is a key sensor for diverse cellular stimuli, regulating the excitability of primary nociceptive neurons. Sensitization of the TRP channel can heighten pain sensitivity to innocuous or mildly noxious stimuli. Here, reversible modulation of TRP channels is achieved by controlling both the light-induced photoelectrochemical reaction to induce neuronal depolarization, and antioxidants for neuronal protection.
View Article and Find Full Text PDFChem Biodivers
January 2025
University of Shanghai for Science and Technology, Department of chemistry, No. 334, Jungong Road, Yangpu District, Shanghai, 200093, Shanghai, CHINA.
The main protease (Mpro) of SARS-CoV-2 is an evolutionarily conserved drug discovery target. The present study mainly focused on chemoinformatics computational methods to investigate the efficacy of our newly designed trifluoromethyl-1,3,4-oxadiazole amide derivatives as SARS-CoV-2 Mpro inhibitors. Drug-likeness ADMET analysis, molecular docking simulation, density functional theory (DFT) and molecular dynamics simulation methods were included.
View Article and Find Full Text PDFAging Cell
January 2025
EPITERNA, Epalinges, Switzerland.
The nematode C. elegans has long served as a gold-standard model organism in aging research, particularly since the discovery of long-lived mutants in conserved aging pathways including daf-2 (IGF1) and age-1 (PI3K). Its short lifespan and small size make it highly suitable for high-throughput experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!